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Transfer Learning in Deep Neural Networks

* Many deep neural networks trained on natural images exhibit a
curious phenomenon in common: on the first layer they learn
features similar to Gabor filters and color blobs. Such first-layer
features appear not to be specific to a particular dataset or task,
but general In that they are applicable to many datasets and tasks.



* general to specific

* fixed transfer layers

* domain discrepancy
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Deep Adaptation Networks

* The main idea of this work Is to enhance the feature transferability
INn the task-specific layers of the deep neural network by explicitly
reducing the domain discrepancy

* to find the domain-invariant representation



MK-MMD

* maximum mean discrepancies
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Problem definition

* Glven a pre-trained deep neural networks and Its source
training data (or not) , and target unlabeled data, transfer
the deep neural networks from source data to target data
by actively select and label the useful samples In target
unlabeled data.



Related Work

* Fine-tuning Convolutional Neural Networks for Biomedical Image
Analysis Actively and Incrementally



* All patches generated from the same candidate share the same
label; they are expected to have similar predictions by the current
C- NN. As a result, their entropy and diversity provide a use- ful
Indicator to the “power” of a candidate In elevating the
performance of the current CNN.
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Algorithm 1: Active incremental fine-tuning method.

Input:

U ={C;}, € [1,n] {U contains n candidates}
Ci = {z]}, j € [1,m] {C; has m patches}
M: pre-trained CNN

b: batch size

a: patch selection ratio

Output:

L: labeled candidates

M,: fine-tuned CNN model at Iteration ¢
Functions:

p < P(C, M) {outputs of M given Vx € C}
M, < F(L, M;_1) {fine-tune M;_, with L}
a ¢ mean(p;) {a = = S pi)

Initialize:

L+ T t—1

1 repeat

2 for each C; € U do

3 Di < P(CH Mt—l)

4 if mean(p;) > 0.5 then

5 | 8} < top a percent of the patches of C;
6 else

7 | S; + bottom « percent of the patches of C;
8 end

9 Build matrix R; using Eq. 3 for S;

10 end

11 Sort U according to the numerical sum of R;
12 Query labels for top b candidates, yielding Q
13 L—LJQ U+—U\Q

14 Mt(—F(.C,Mt_l),tFt-i-l

15 until classification performance is satisfactory;
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Thoughts
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