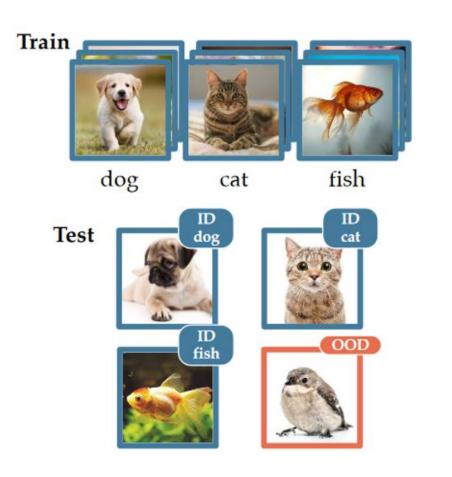


Mining In-distribution Attributes in Outliers for Out-ofdistribution Detection

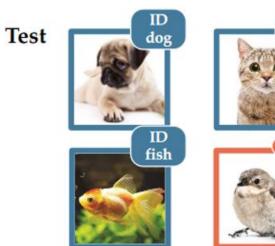

Yutian Lei, Luping Ji*, Pei Liu

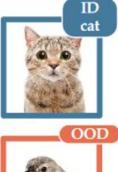
AAAI 2025

Background

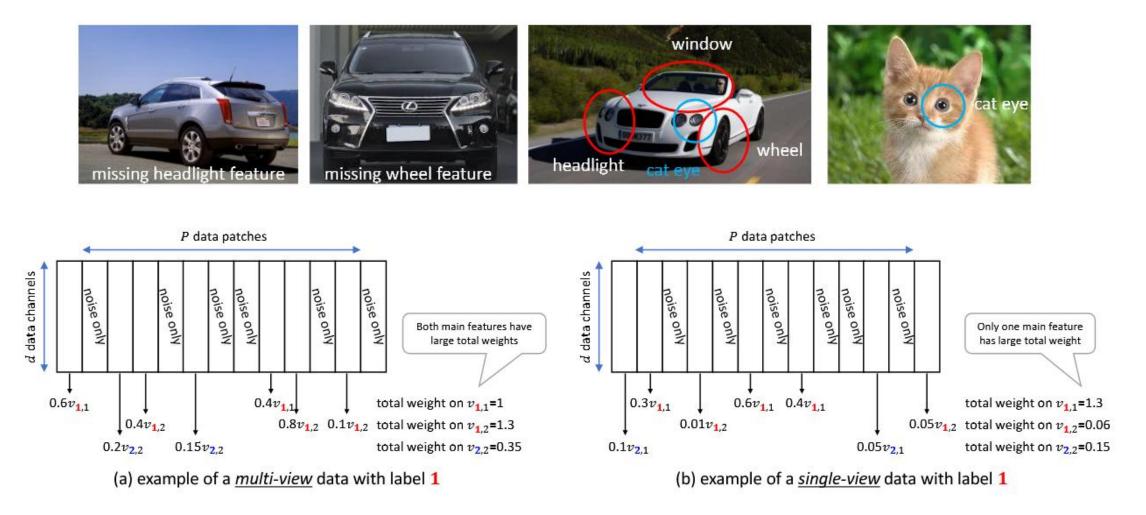
OOD Detection

OOD Detection with outlier exposure (OE)




cat

dog



Multi-view Data Model

a data point comprises main features, minor features, and noise

Example

• When the label is class 1, then:

both v_1, v_2 appears with weight 1, one of v_3, v_4 appears with weight 0.1 w.p. 80%; only v_1 appears with weight 1, one of v_3, v_4 appears with weight 0.1 w.p. 10%; only v_2 appears with weight 1, one of v_3, v_4 appears with weight 0.1 w.p. 10%.

• When the label is class 2, then

both v_3, v_4 appears with weight 1, one of v_1, v_2 appears with weight 0.1 w.p. 80%; only v_3 appears with weight 1, one of v_1, v_2 appears with weight 0.1 w.p. 10%; only v_4 appears with weight 1, one of v_1, v_2 appears with weight 0.1 w.p. 10%.

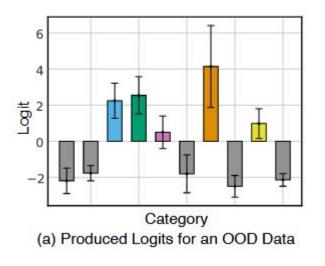
Definition

Definition 1 (data distributions D_m^{in} and D_s^{in}). Given $D \in \{D_m^{in}, D_s^{in}\}$, we define $(X^{in}, y) \sim D$ as follows. First, choose the label $y \in [k]$ uniformly at random. Then, X^{in} is generated as follows:

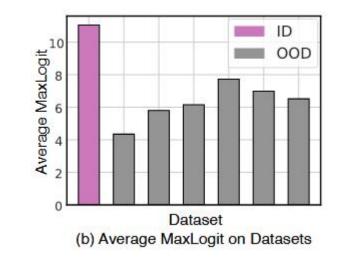
1. Denote $\mathcal{V}(X^{in}) = \{v_{y,1}, v_{y,2}\} \cup \mathcal{V}'$ as the set of feature vectors used in this data vector X, where $\{v_{y,1}, v_{y,2}\}$ are main **ID** features and \mathcal{V}' is a set of minor **ID** features uniformly sampled from $\{v_{j,1}, v_{j,2}\}_{j \in [k] \setminus \{y\}}$.

2. For each $v \in \mathcal{V}(X)$, pick many disjoint patches in [P]and denote them as $\mathcal{P}_v(X^{in}) \subset [P]$. We denote $\mathcal{P}(X^{in}) = \bigcup_{v \in \mathcal{V}(X^{in})} \mathcal{P}_v(X^{in})$.

3. If $D = D_s^{in}$ is the single-view distribution, pick a value $\hat{\ell} = \ell(X^{in}) \in [2]$ uniformly at random.


4. For each $v \in \mathcal{V}(X^{in})$ and $p \in \mathcal{P}_v(X^{in})$, $x_p = z_p v +$ "noise" $\in \mathbb{R}^d$. These random coefficients $z_p \ge 0$ satisfy: · In the case of multi-view distribution $D = D_m^{in}$: 1) $\sum_{p \in \mathcal{P}_v(X^{in})} z_p \in [1, O(1)]$ when $v \in \{v_{y,1}, v_{y,2}\}$; 2) $\sum_{p \in \mathcal{P}_v(X^{in})} z_p \in [\Omega(1), 0.4]$ when $v \in V(X^{in}) \setminus \{v_{y,1}, v_{y,2}\}$. · In the case of single-view distribution $D = D_s^{in}$: 1) $\sum_{p \in \mathcal{P}_v(X^{in})} z_p \in [1, O(1)]$ when picked $v = v_{y,\hat{\ell}}$; 2) $\sum_{p \in \mathcal{P}_v(X^{in})} z_p$ is much smaller than that of $v_{y,\hat{\ell}}$ and can be ignored when $v \in V(X^{in}) \setminus \{v_{y,\hat{\ell}}\}$.

5. For each $p \in P \setminus P(X^{in})$, x_p consists only of "noise".

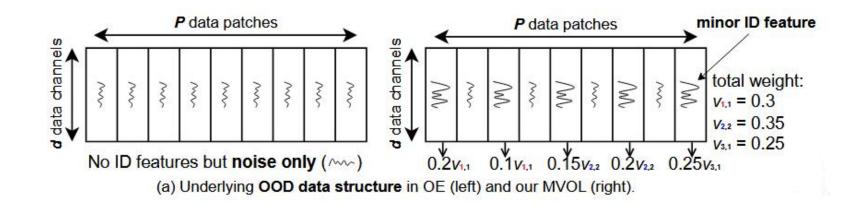

Motivation

ParNeC 模式识别与神经计算研究组 PAttern Recognition and NEural Computing

outliers could contain ID attributes

outliers mainly consist of minor ID features and noise

Definition


 $\bigcup_{v\in\mathcal{V}(X^{out})}\mathcal{P}_v(X).$

Definition 3 (Out-of-distribution D^{out}). We define $X^{out} \sim D^{out}$ as follows. X^{out} is generated by:

1. Denote $\mathcal{V}(X^{out})$ as the set of minor ID feature vectors used in this data vector X^{out} , which are uniformly sampled from $\{v_{j,1}, v_{j,2}\}_{j \in [k]}$.

2. For each $v \in \mathcal{V}(X^{out})$, pick many disjoint patches in [P]and denote it as $P_v(X^{out}) \subset [P]$. We denote $P(X^{out}) =$ 3. For each $v \in \mathcal{V}(X^{out})$ and $p \in \mathcal{P}_v(X^{out})$, we set $x_p = z_p v +$ "noise" $\in \mathbb{R}^d$. These random coefficients $z_p \ge 0$ satisfy that: $\sum_{p \in \mathcal{P}_v(X^{out})} z_p \in [\Omega(1), 0.4]$.

4. For each $p \in [P] \setminus \mathcal{P}(X^{out})$, x_p consists only of "noise".

Interpretability of MaxLogit

MaxLogit based OOD detector. For a sample $(X^{in}, y) \sim D^{in}$ or $X^{out} \sim D^{out}$ and a neural network F. Feeding $X \in \{X^{in}, X^{out}\}$ into F, we get logit outputs $F(X) = (F_1(X), \ldots, F_k(X)) \in \mathbb{R}^k$. Then, the MaxLogit scoring function is given as follows.

 $MaxLogit(X; F) = max(F_1(X), \ldots, F_k(X)).$

Then MaxLogit can be used in the following OOD detector:

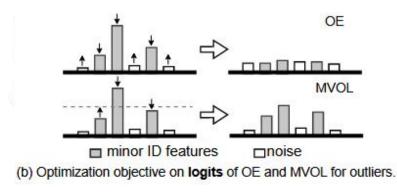
$$G(X;\tau,F) = \begin{cases} 0 & \text{if } \operatorname{MaxLogit}(X;F) \le \tau, \\ 1 & \text{if } \operatorname{MaxLogit}(X;F) > \tau, \end{cases}$$
(1)

$$I(X) = \operatorname{argmax}_{j \in [k]} \sum_{\substack{p \in P_{v_{j,1}}(X) \bigcup P_{v_{j,2}}(X) \\ p \in P_{v_{j,1}}(X) \bigcup P_{v_{j,2}}(X)}} z_p; \quad (2)$$

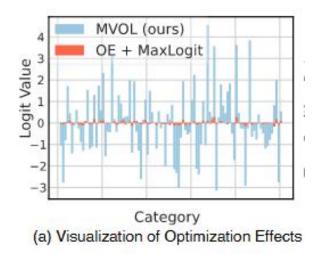
$$z(X) = \max_{j \in [k]} \sum_{\substack{p \in P_{v_{j,1}}(X) \bigcup P_{v_{j,2}}(X)}} z_p \quad (3)$$

I(X) is the category with the largest sum of coefficients on associated features. z(X) is this sum value.

Proposition 1. For every $X^{out} \sim D^{out}$, every $(X_s^{in}, y_s) \sim D_s^{in}$, and every $(X_m^{in}, y_m) \sim D_m^{in}$, we have: $z(X^{out}) < z(X_s^{in})$ and $z(X^{out}) < z(X_m^{in})$


 $F_{I(X^{out})}(X^{out}) < F_{I(X_s^{in})}(X_s^{in})$ and $F_{I(X^{out})}(X^{out}) < F_{I(X_m^{in})}(X_m^{in})$ with Proposition 1, which corresponds to relation among MaxLogit scores.

Multi-view-based Learning Objective



confidence loss in OE

$$\mathcal{L}_{\text{OE}} = \frac{1}{N} \sum_{j=1}^{N} -\log P_{\theta}(\hat{y} = y | X_j^{in}) + \frac{\beta}{M} \sum_{j=1}^{M} \sum_{i=1}^{k} -\frac{1}{k} \log P_{\theta}(\hat{y} = i | X_j^{out})$$

$$\begin{aligned} \mathcal{L}_{MVOL}^{(t)} &= \frac{1}{N} \sum_{j=1}^{N} -\log P_{\theta}(\hat{y} = y | X_{j}^{in}) \\ &+ \frac{\beta}{M} \sum_{j=1}^{M} \sum_{i=1}^{k} -p_{j,i}^{(t)} \log P_{\theta}(\hat{y} = i | X_{j}^{out}), \\ &\text{where} \quad p_{j,i}^{(t)} = \min(\text{logit}_{i}(F^{(t)}, X_{j}^{out}), \epsilon), \quad (6) \end{aligned}$$

Experiment

	Catagony	Method	CIFAR-10			CIFAR-100		
	Category		FPR95↓	AUROC ↑	ID-Acc↑	FPR95↓	AUROC ↑	ID-Acc↑
	Post Hoc	MSP	56.29 ± 1.62	89.59 ± 0.63	94.27 ± 0.14	80.75 ± 0.81	74.70 ± 1.01	74.69 ± 0.21
		Energy	41.20 ± 5.28	89.70 ± 1.93	94.27 ± 0.14	72.58 ± 1.78	79.01 ± 1.12	74.69 ± 0.21
00		MaxLogit	41.68 ± 4.99	89.69 ± 1.88	94.27 ± 0.14	73.21 ± 1.69	78.88 ± 1.11	74.69 ± 0.21
Single Model Setting		ODIN	41.75 ± 3.86	87.38 ± 2.41	94.27 ± 0.14	68.13 ± 1.83	79.36 ± 0.91	74.69 ± 0.21
		Mahalanobis	23.96 ± 1.26	92.81 ± 0.32	94.27 ± 0.14	46.40 ± 3.73	87.44 ± 1.12	74.69 ± 0.21
		KNN	30.89 ± 2.76	94.53 ± 0.44	94.27 ± 0.14	82.02 ± 2.58	75.84 ± 1.35	74.69 ± 0.21
		ASH	40.03 ± 5.18	90.01 ± 1.70	94.26 ± 0.11	63.31 ± 1.91	79.35 ± 1.09	74.23 ± 0.31
	Outlier Synthesis	VOS	34.67 ± 5.01	91.54 ± 1.92	94.75 ± 0.17	70.17 ± 2.52	81.73 ± 1.78	75.94 ± 0.20
		ATOL	12.86 ± 0.59	97.34 ± 0.07	93.89 ± 0.17	64.67 ± 1.73	80.17 ± 1.34	72.70 ± 0.17
S	Outlier Exposure	Energy w/Aux	4.70 ± 0.50	97.77 ± 0.06	90.74 ± 0.24	52.43 ± 3.51	88.40 ± 1.16	62.13 ± 0.27
		OE	4.25 ± 0.15	98.56 ± 0.07	94.47 ± 0.13	46.51 ± 3.65	89.78 ± 0.98	74.02 ± 0.04
		OE + MaxLogit	4.12 ± 0.20	98.58 ± 0.07	94.47 ± 0.13	46.20 ± 3.53	90.59 ± 0.87	74.02 ± 0.04
		MVOL (ours)	3.30 ± 0.19	98.70 ± 0.05	94.68 ± 0.09	42.96 ± 0.86	$\textbf{90.69} \pm 0.26$	74.29 ± 0.33
Jodel Setting	Post Hoc	MSP	55.82 ± 2.46	89.52 ± 0.53	94.36 ± 0.11	80.36 ± 0.72	74.72 ± 0.79	76.99 ± 0.15
		Energy	38.23 ± 1.72	89.97 ± 0.57	94.36 ± 0.11	71.97 ± 1.02	79.66 ± 0.57	76.99 ± 0.15
		MaxLogit	38.64 ± 2.00	89.94 ± 0.57	94.36 ± 0.11	72.71 ± 1.08	79.46 ± 0.60	76.99 ± 0.15
		ODIN	40.46 ± 2.20	86.94 ± 1.07	94.36 ± 0.11	67.71 ± 0.61	78.71 ± 0.78	76.99 ± 0.15
		Mahalanobis	23.06 ± 0.64	92.94 ± 0.19	94.36 ± 0.11	42.36 ± 1.93	88.39 ± 0.49	76.99 ± 0.15
		KNN	41.98 ± 2.47	92.70 ± 0.55	94.36 ± 0.11	84.67 ± 2.72	73.67 ± 1.78	76.99 ± 0.15
nsemble Distillation Model Setting		ASH	36.50 ± 1.43	91.55 ± 0.55	94.23 ± 0.09	59.19 ± 1.75	80.20 ± 0.49	76.41 ± 0.26
	Outlier Synthesis	VOS	30.58 ± 4.34	92.23 ± 1.07	95.02 ± 0.11	72.01 ± 1.81	79.86 ± 1.90	77.18 ± 0.28
		ATOL	28.14 ± 1.79	93.60 ± 0.43	94.19 ± 0.07	74.07 ± 0.98	77.82 ± 0.66	74.79 ± 0.09
	Outlier Exposure	Energy w/Aux	4.10 ± 0.24	98.07 ± 0.04	91.48 ± 0.19	52.81 ± 3.52	89.14 ± 0.81	68.27 ± 0.48
H		OE	3.95 ± 0.23	98.56 ± 0.07	94.67 ± 0.23	47.04 ± 0.73	89.35 ± 0.21	75.01 ± 0.13
nse		OE + MaxLogit	3.61 ± 0.24	$\textbf{98.62} \pm 0.06$	94.67 ± 0.23	46.92 ± 0.75	$\textbf{90.79} \pm 0.26$	75.01 ± 0.13
		MVOL (ours)	3.34 ± 0.20	98.61 ± 0.06	94.68 ± 0.20	36.62 ± 1.36	90.37 ± 0.43	76.27 ± 0.33

Experiment

Noise	Method	Sin	igle Model Set	ting	Ensemble Distillation Model Setting			
Noise	withiou	FPR95↓	AUROC ↑	ID-Acc↑	FPR95↓	AUROC ↑	ID-Acc↑	
5	MaxLogit	47.39 ± 2.93	89.81 ± 0.55	91.38 ± 0.24	$ 40.59 \pm 2.50$	90.21 ± 0.71	91.94 ± 0.09	
	WOODS	21.97 ± 1.83	96.02 ± 0.32	91.20 ± 0.22	51.50 ± 3.99	84.85 ± 0.99	89.79 ± 0.19	
$\alpha = 0$	OE + MaxLogit	18.04 ± 1.34	96.57 ± 0.15	92.24 ± 0.08	18.86 ± 2.10	96.12 ± 0.31	92.32 ± 0.15	
	MVOL (ours)	17.34 ± 2.86	96.21 ± 0.30	91.71 ± 0.08	12.96 ± 0.95	$\textbf{96.45} \pm 0.14$	91.96 ± 0.13	
	WOODS	22.04 ± 2.36	96.02 ± 0.34	91.27 ± 0.16	51.49 ± 3.97	84.86 ± 0.99	89.79 ± 0.19	
$\alpha = 0.05$	OE + MaxLogit	22.11 ± 1.26	95.64 ± 0.26	91.29 ± 0.20	23.11 ± 3.90	95.67 ± 0.48	91.51 ± 0.18	
	MVOL (ours)	19.55 ± 1.04	$\textbf{96.22} \pm 0.16$	91.75 ± 0.23	12.87 ± 1.11	$\textbf{96.49} \pm 0.11$	91.74 ± 0.30	
	WOODS	22.38 ± 2.30	95.98 ± 0.35	91.27 ± 0.21	51.59 ± 4.03	84.85 ± 0.98	89.81 ± 0.19	
$\alpha = 0.1$	OE + MaxLogit	25.49 ± 1.60	94.97 ± 0.30	90.92 ± 0.31	26.90 ± 3.04	95.24 ± 0.41	91.01 ± 0.22	
	MVOL (ours)	18.05 ± 1.58	96.16 ± 0.20	91.55 ± 0.31	13.96 ± 0.80	96.07 ± 0.15	91.64 ± 0.28	
	WOODS	22.03 ± 2.45	95.99 ± 0.40	91.24 ± 0.19	51.58 ± 4.03	84.86 ± 0.99	89.80 ± 0.21	
$\alpha = 0.3$	OE + MaxLogit	37.67 ± 3.85	92.64 ± 0.44	89.04 ± 0.30	51.20 ± 6.17	91.83 ± 0.57	88.60 ± 0.13	
	MVOL (ours)	20.71 ± 1.86	95.94 ± 0.32	91.24 ± 0.16	13.79 ± 0.93	96.43 ± 0.16	91.76 ± 0.07	
	WOODS	22.31 ± 3.05	$\textbf{95.93} \pm 0.50$	91.28 ± 0.12	51.49 ± 3.96	84.86 ± 0.99	89.80 ± 0.20	
$\alpha = 0.5$	OE + MaxLogit	45.14 ± 2.94	90.22 ± 0.63	88.04 ± 0.18	54.23 ± 3.77	89.93 ± 0.21	86.80 ± 0.21	
	MVOL (ours)	25.53 ± 1.23	95.23 ± 0.18	90.79 ± 0.21	14.85 ± 1.86	96.44 ± 0.32	91.81 ± 0.19	

Thanks