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Introduction

• Traditional methods mainly adopt hand-crafted priors, such 
as histogram equalization (HE) and Retinex theory to 
improve contrast and restore details.

• learning-based methods can directly learn the mapping from 
low-light images to normal-light images through powerful 
network architectures and sophisticated learning strategies, 
which present more robustness than traditional methods.

• To leverage the label-free characteristic of unsupervised 
learning to improve the generalization of diffusion models, 
some methods employ zero-shot solutions that utilize well-
established priors from pre-trained diffusion models for 
restoration without training from scratch.



Introduction

Contribution:

• Propose a diffusion-based framework, termed LightenDiffusion, that leverages the 
advantages of Retinex theory and the generative ability of diffusion models for 
unsupervised low-light image enhancement, with a self-constrained consistency loss 
further proposed to improve visual quality.

• A content-transfer decomposition network that performs decomposition in the latent 
space, aiming to obtain content-rich reflectance maps and content-free illumination 
maps to promote unsupervised restoration.



Proposed Network

• Employ an encoder E(·) to convert the unpaired low-light image Ilow and normal-light image Ihigh into 
latent space

• The encoded features are sent to the proposed content-transfer decomposition network (CTDN)
• The reflectance map of the low-light image Rlow and the illumination of the normal-light image Lhigh are 

taken as the input of the diffusion model
• Send it to a decoder D(·) to produce the final result Iˆ

low.



Proposed Network

Content-Transfer Decomposition Network

• CTDN can generate content-rich reflectance maps that 
fully represent the intrinsic information of the image, 
and content-free illumination maps that only reveal the 
lighting conditions

The Retinex theory：

• Existing methods typically perform decomposition in the 
image space to obtain the above components, which 
results in the content information not being fully 
decomposed into the reflectance map and partially 
retained in the illumination map



Proposed Network

Content-Transfer Decomposition Network

estimate the initial reflectance and illumination maps

• cross-attention (CA) module to leverage the illumination map to reinforce the 
content information in the reflectance map

• self-attention module (SA) is adopted  to further extract content information in 
the illumination map



Proposed Network

Network Training

a two-stage strategy for network training：

1. Using SICE dataset to optimize the encoder E(·), CTDN, and decoder D(·), while 
freezing the parameters of the diffusion model.

encoder and decoder are optimized with the content loss 

The CTDN is optimized with the decomposition loss

λ2, λ3, and λg are empirically set to 0.1, 0.01, and 10



Proposed Network

Network Training

2.   Collect ~180k unpaired low/normal-light image pairs to optimize the diffusion model while 
freezing the parameters of other modules.

the Lscc aims to enable the restored feature to share the same intrinsic information as the input low-light 
image

first perform the reverse denoising process in the training phase following to generate the restored feature 
and construct a pseudo label F ̃low from decomposition results of the low-light image as a reference based 
on traditional Gamma correction approaches as



Experiments

Settings

• Implement on four NVIDIA RTX 2080Ti
• batch size and patch size are set to 12 and 512 ×512
• the initial learning rate set to 1×10−4 in the first stage and decays by a factor of 0.8 while reinitializing it 

to a fixed value of 2×10−5 in the second stage.
• the U-Net architecture is adopted as the noise estimator network with the time step T and sampling step S 

set to 1000 and 20 for the forward diffusion and reverse denoising processes, respectively.

Datasets

• two paired datasets：LOL and LSRW
     ——using PSNR,SSIM and  LPIPS
• three real-world unpaired benchmarks：DICM, NPE, and VV
     ——use two non-reference perceptual metrics NIQE and PI  



Experiments

‘T’, ‘SL’, ‘SSL’, and ‘UL’ indicate that the methods belong to traditional, supervised, 
semi-supervised, and unsupervised methods, respectively.

Quantitative Comparisons 



Experiments
Qualitative Comparisons 

Qualitative comparison on the LOL and LSRW test sets.



Experiments

Qualitative comparison on the DICM, NPE, and VV datasets.



Experiments

Comparison of low-light face detection results on the DARK FACE dataset

Conduct experiments on the DARK FACE dataset



Ablation Study



Ablation Study

• It is difficult to achieve satisfactory decomposition in 
the image space

• Increasing k improves the overall performance and 
inference speed, while showing slight performance 
degradation at k = 4

• Previous decomposition networks are unable to 
obtain content-free illumination maps

• CTDN enables the generation of content-rich 
reflectance maps and content-free illumination 
maps



Ablation Study

• Removing Lscc results in decreased overall performance

• Increase the sampling step S to 50 and 100 to evaluate the performance of the diffusion model 
trained with vanilla diffusion loss——the quality of generated results from diffusion models 
would improve with increasing S but slower inference speed
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