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Noisy Label

Most existing studies assume that training data is labeled correctly.

Building a completely clean dataset with high-quality annotation is costly in realistic
medical scenarios, as labeling medical data is time-consuming and labor-intensive
requiring expertise.

It would unavoidably introduce noisy labels when hiring non-professionals to label or
using automatic labeling techniques.

Directly learning with such noisy labels

Degrading the generalization performance
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' Centralized Noisy Label Learning
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e C(lassification:

(1) Class-conditional noise: each instance from one class has a fixed
probability of being assigned to another.

(2) Instance-dependent noise: a data sample is more likely to be mislabeled
due to its content rather than the class label it belongs to.

e Method:

(1) Loss correction: aims to correct the loss by estimating the noise
transition matrix, adjusting the example labels or weights.

(2) Example selection: separate clean examples from noisy ones based on
the small-loss criterion and further consider recognized mislabeled examples
as unlabeled ones to perform semi-supervised learning.




Limitations
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Data Privacy and Inaccessibility:

In FL, the data is scattered in clients, and the global data cannot be centrally
accessed. Noise processing methods that rely on global information cannot be
implemented.

Non-I1ID

There are large differences in the distribution of client data. Traditional methods
assume that the data is IID, which leads to the failure of noise detection and
correction.

Client capability differences

The computing resources and storage capacity of clients are uneven. Complex
local noise processing, such as generative adversarial network denoising, may
exceed some client load capabilities.

Differences in local noise levels

The difference in the proportion or type of noise between different clients is
significant. The global unified noise processing strategy cannot adapt to all clients.




Federated Noisy Label Learning

Classification:

(1) Class-conditional noise

(2) Instance-dependent noise

Method:

(1) Loss correction

(2) Example/Client selection

Setting:
(1) Some clients are clean while others are not

(2) Each client has partially noisy data
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Imbalance and Label Noise Heterogeneity

Nannan Wu!, Li Yu', Xuefeng Jiang?, Kwang-Ting Cheng® and Zenggiang Yan'*

School of Electronic Information and Communications, Huazhong University of Science and
Technology
*Institute of Computing Technology, Chinese Academy of Sciences

3School of Engineering, Hong Kong University of Science and Technology
{wnn2000, hustlyu } @hust.edu.cn, jiangxuefeng21b@ict.ac.cn, timcheng @ust.hk, z_yan@hust.edu.cn

[JCAI 2023

\\\\\\\ulrm;,,//

1952

/V J”““b\ ?‘

"’/Wnum\ 3

,_g‘

& %



<
ﬁii%\\\\\mm% -

-

fac,

iy

&

LR

1952

‘i

L
&
F

&

Challenges

N

Existing methods for noisy client detection propose to calculate an average indicator (e.g. loss) over
all samples of each client as its feature and filter out the clients with abnormal features as noisy clients.

(3) Aggregation @

N
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Jingyi Xu, et al., FedCorr: Multi-Stage Federated Learning for Label Noise Correction. (CVPR2022)
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Less Effective in Real-World FL

Data is highly class-imbalanced from the global perspective.

Data heterogeneous across clients affecting the calculation of indicators.

Label noise is heterogeneous across clients in both strength (different noise rates)
and pattern (various forms of label noise).

Eg. 1

Cancer-specialized hospital A (more malignant cases)
General hospital B (more healthy cases)

A 1s more likely to produce an abnormal client-wise feature (e.g., large loss values
similar to noisy clients) due to class imbalance (i.e., healthy >> malignant).

Eg. 2

Hospital C (more healthy cases) benign — health
Hospital D (more malignant cases)  benign — malignant

Though both labels are wrong, the loss values (produced by C would be much
smaller than D, due to class imbalance (i.e., healthy>>malignant).
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Define the global noise rate p as the proportion of noisy clients.

Local noise rate 7, (i.e., the proportion of noisy samples) follows the uniform distribution.

The pattern of noise samples: heterogeneous instance-dependent noise (H-IDN).

Definition 1 (H-IDN). IDN is heterogeneous if noise transi-
tion probability is a function of local data distribution, i.e.,

PrlY =3 | ¥ =4.X = %)= Muya(Bdn.u)), where
M, . denotes the noise transition matrix of instance .

(b) H-IDN
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Algorithm 1 Noise Generation.

Input: Number of clients K; clean local datasets { Dy} 5 ;
g}obal noise rate p; local noise rate distribution parameters
URL/A
1: 7 = Randomly select pK elements from [K].
2: foriinZ do
3:  Initialize a network f;.
4:  Train f; on the local dataset D; = {(x;, gj)}j\;1
5:  Compute classification probabilities p(Y | z) €
[0, 1]V %€ for all samples in D;.
6:  Compute the misclassification probability p(z) € |p(ax;)=1—p(Y =y, | z;),
[0, 1]V for each sample in D; (Eq. 1).
7. mi~U(n',n).
8: N = Randomly select 7; N; elements from [N;] with

the probability p(x)/ > p(x). > Normalization
9:  fortin N do
10: 9, = Randomly select a different label from Y with
the probability [p(Y | x¢).
1§10 Flip y; to 7,. > Add label noise
12:  end for
13: end for

Output: Local datasets after adding label noise { Dy}, .
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Stage 1

4. GMM

L11 [ .

5. Client E
Identification |
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- Noisy
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3. Per-Class Loss
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Stage 2 DaAgg
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Local Models of Clean Clients *
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Local Models of Noisy Clients
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Train with Labels
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Train with Soft Labels

g% m_%

Clean Clients Noisy Clients *

Overview of the proposed two-stage framework FedNoRo.
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Stage 1: Noisy Client Detection
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Train a warmup model for T1 rounds by FedAvg.

The average loss values of all classes on each client i denoted as 1; = (I}, 17, ...,15)T € RY

Considering the class-missing problem in heterogeneous data, a specific class ¢ may not

exist in client i, leading to a missing average loss value, which simply replaced by the
minimum value of class ¢ across all clients.

: [¢$ — min; [§
Normalized to [0, 1]: [¢ = J -t T,
max; [§ — min; I$

- Noisy

IZI:]:] - Clean




, Stage 2: Noise-Robust Training

Local training phase
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For clean clients, the vanilla cross-entropy loss 1s adopted to train each local model

based on clean labels.

For noisy clients, a knowledge distillation-based training method is applied.

Given any x and its output logit from the global model, a targeted probability

distribution is calculated as

L=Akr(¥p¥c)+

Model aggregation phase

Yo = softmax(

fa(z)
T

(1 =X Lcr(Yp,T),

A grows from 0 to Ay, q4

Distance-aware model aggregation is proposed, where a client-wise distance metric is:

Normalized to [0, 1] : D(i) =

K
Aggregation weight: w, =)

i=1

d(i) = min |lw; — wj]|2,

d(i)

max; d(j) "

Nie_D(i)

- w
Z_;(Zl NJG_D(J)

7.




Experimental Results

Performance Results

‘ 5 0.0 02 03 04 06
g I i i F. 7™ | (0.0,0.0) | (0.3,05) | (0.5,0.7) | (0.3,0.5) | (0.5,0.7) | (0.3,0.5) | (0.5,0.7) | (0.3,0.5) | (0.5,0.7)
- Best | 69.34 65.81 64.53 62.49 60.82 6052 | 5838 58.46 5477
g Last | 68.92 65.33 63.97 62.10 60.23 60.05 56.79 56.88 50.35
L i Best | 68.16 64.58 63.64 61.81 61.91 60.85 58.50 60.2T 57.57
Last | 67.29 63.80 | 62.65 61.46 61.00 59.99 57.85 59.35 56.63
=y Best | 7356 69.45 69.28 66.84 64.84 66.60 | 62.39 63.00 58.78
Last | 73.07 68.82 | 6845 66.20 64.03 63.90 | 60.51 61.86 54.99
RoFL Best = 757 | 4042 | 4064 39.87 3035 35.60 39.68 35.35
Last g 4219 | 4030 | 4095 39.27 40.25 35.39 40.18 35.47
RHFL Best - 57.48 56.91 56.72 55.74 53.26 54.30 54.63 51.00
Denoise FL Last : 57.05 56.46 55.75 52.19 54.71 52.08 52.53 49.64
AL Best - 5599 | 55.28 5444 5207 5748 4820 50.89 | 4330
Last - 55.60 | 5477 53.95 51.70 5192 | 4677 19.96 39.81
—— Best : 5790 | 56.68 55.02 54.61 53.62 50.82 5089 | 47.13
Last ; 57.68 55.86 54.52 53.62 5260 | 4959 50.24 46.13
: Best : 6478 64.29 62.58 62.78 62.19 39.58 57.88 5453
Joint BedCou+LA | 1ge ) 63.99 63.55 61.90 61.87 61.30 60.06 57.17 53.92
— sy Best : 7059 | 70.64 | 70.14 69.35 | 70.69 | 69.30 67.55 63.83
L Last : 7018 | 69.81 69.29 6847 | 7014 | 6887 67.10 63.29

Table 1: Quantitative BACC (%) comparison results on the ICH dataset under different noise rates. The best results are marked in bold.

Ll (nl,pn") (0.8;%.0) (0.&37) (O-g-ﬁﬁo-ﬂ
FedAvg Do | 6542 | ols | 088
FedProx Lo | 6960 | 6013 | 087
s | Bx | BE | gor | u
RofL IR R
RHFL Lt | - | 4404 | 4500
FedLSR . ] o1 | seos
FedCorr EZSE ] 3%?421 g??g
FedCorr+LA ESZ{ ] 28?2 245139
FedNoRo (ours) Eﬁ:g 3 2222 gggg

Table 2: Quantitative BACC (%) results on the ISIC 2019 dataset
under different noise rates. The best results are marked in bold.
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Experimental Results

Ablation Studies
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Communication Rounds

Figure 4: Ablation study of 7% for warm-up training.

Indicator | LA Per-Class  Norm. | Re (%) Pr (%) MR (%)
ICH, p =03, [«",9") =1(0:3,0.5)
LID X X X 10000 5454  0.00
Conf. X X X 16.66  8.33 0.00
Loss X X X 9458  57.12 0.00
Loss v X X 10000 47.14 0.00
Loss X v X 97.19  90.63  85.77
Loss v v X 9948 9778  96.93
Loss v v v 99.70  98.76  98.28
p =104, (7', 7*) = (0.3,0.5)
LID X X X 8750  63.63  0.00
Conf. X X X 37.50  25.00 0.00
Loss X X X 7880  60.57  0.00
Loss v X X 89.41 8046  0.00
Loss X v X 65.77 100.00 37.58
Loss v v X 81.10  100.00  47.09
Loss v v v 90.23  100.00  $8.82

Table 3: Ablation study of the first stage in FedNoRo.

Noisy Clients Ei fmsegggggy T |,
z X x| ot 8| ST
X X | x| %0
7 X | V| Tax | 6815 | 5860
7 X | T | eain | 3%
/ AL

Table 4: Ablation study of the second stage in FedNoRo. Set-
tings: p=0.4 and (n',n*)=(0.3,0.5) for the ICH dataset; p=0.6,
(nl, 1n“)=(0.5,0.7) for the ISIC dataset.

i |




AL
i Eéi\\\\\\\\mm,w///

&
>

Yy,
S

%

& 7
o \\\\\lllrm,
M

&%

%/ 195288
/&"Imul'n\\\\“‘
UAb

, FedBeat

FEDERATED LEARNING WITH INSTANCE-DEPENDENT NOISY LABEL
Lei Wang, Jieming Bian, Jie Xu

Electrical and Computer Engineering, University of Miami, Coral Gables, FL. 33146, USA

ICASSP 2024
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Step 1: Federated
Data Extraction

Dl I I
Extracti
’;: Cli(\llt ];r-l-:( rac IO]II I
i D |
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= Ve ; ~ Vo t.p i.p 3 I
Server  (jient 2 B Ser Vei —— | mmmmmm el 5
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Step 2: Federated Transition Matrix Estimation

___________________________

i J‘Erl
W —— X, i, i) VL

»7, client 1 {0 - i) iy :
s s

z 7

|
1
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et I L.-! Estimation Network /

By, i ~ |
A N

{ _ D - I Di={(x0)}s A E\‘.

\ P client 1 ™, . Yi—> L I
-_— D \\‘\ e — wt P T i Noisy Dataset
-t ---> ! i i —1 i

| - =50 oo at, | Fa i.%?._'ﬂx’ Tip) > @t Clssitiation |
Server : . ; i | i t--d Network
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An overview of FedBeat
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, Noise Model

We detine 7, (s the i, j-th element of instance-dependent noise transition matrix
(IDNTM), representing the transition probability of a sample x with a clean label i
transitioning to a noisy label ;.

Thus, the noisy class-posterior probability can be inferred by the IDNTM and the clean
class-posterior probability as follows:

P = j|X === TPy =ilX =)

1=1




, Stepl. Federated Data Extraction

D,
g_ 1Ext1‘acl-ion

client K Dk »

'I‘

W
%
= _§%‘~
§

Il
N\ll m,r// Z

&

Initial training: T1 rounds, and each client performs P1 local
steps during each round.

Weak global model: w =", Nywy, p, /N

It is returned to the clients to generate pseudo-labels on the
training data samples

Bayesian model ensemble:

Denoting the average model , = 1 , the server then calculates
the standard deviation X of the local models

: N 2
> = diag (Zﬁk (wr_lfwhpl —u) ) i

k

Sample M ensemble models w* (™) ~ N(u, %), m =1,..., M.

M -~
flx;) = % Z f (xi;wk’(m)) §; =argmax. fe(X;)
m=1

Extracted dataset: ﬁk — $( % Ui, T 21 E ﬁk and f@ (X4) 2 7]

Y2 |
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Step2. Federated Transition Matrix Estimation
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When provided with an input example x, the estimation network 0 generates the IDNTM,
which contains the probability of transitioning from the clean distribution to the noisy
distribution.

T2 rounds training, and each client performs P2

, | — | | — | — | | \ .
l Step 2: Federated Transition Matrix Estimation \ local Steps durlng eaCh rOHnd'
: O s 51 B0 =06

= » !_P}_:': {(X’E: yi:y‘i)}zzl e ? : ’

| ot client 1 ! Ui >R =|

- ' 4 Local training loss function
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Step3. Federated Classifier Correction

P L I I = L = | = == == — I = I ]
Step 3: Federated Classifier Correction

--------------------------------
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Once the estimation network @has been trained, it can be employed to correct the
weak global classification model  derived from step 1.

T3 communication rounds for global model aggregation, with each round consisting of

P3 local steps.

Classifier correction loss function:

L(w

Zzyzclog

i=1 ¢c=1

P(Y = j|X =x)

C
1=1

([ Gusot)

T;,;(x)

P(Y =i|X = x).




Experimental Results

Performance Results

Table 1. Test accuracy on CIFAR-10 with different IDN rates

1D non-IID (apir = 1)
IDN-30% IDN-50% IDN-30% IDN-50%
FedAvg 73.10 =097 6199 +1.82 6141 +326 47.64+1.56
FedProx 7197 +1.16 58.66 096 61.57+1.65 47.74+0.95
BLTM-local 4575 £055 3625 4+058 57644201 49.134+1.27
FedCorr 6590 +=1.50 5441 £0.89 062.23+234 5046+ 2.29
FedBeat(ours) 81.58 +£0.24 7451 £2.71 72.61 £0.31 58.44 4+ 3.53

Table 2. Test accuracy on SVHN with different IDN rates

11} non-11D (apir = 1)

IDN-30% IDN-50% IDN-30% IDN-50%
FedAvg 88.35+091 7424 +024 83.79+047 61.86+ 2.98
FedProx 80.46 +0.23 71.81 £2.34 84.64+021 64.06+ 1.13
BLTM-local  71.14 +139 5226 +0.67 70444134 57.13+2.78
FedCorr 86.18 £3.52 7056 +4.63 81.20+1.61 59.37+3.15
FedBeat(ours) 94.59 +£0.25 87.97 £290 9259+ 0.40 75.26 + 2.89
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Experimental Results

Ablation Studies

Table 3. Test accuracy on SVHN with IDN-30% varying apir

apir = 0.5 apir =1 Qpir = O
FedAvg 81.46 £ 1.66 83.79 +047 8498 £0.72
FedProx 8223 +142 84.644+0.21 84.184+1.01
BLTM-local 7343 £093 7044 £1.34 60.08 & 0.68
FedCorr 7642 +1.88 81.20+1.61 82.61 +2.87
FedBeat(ours) 92.12 1+ 0.49 9259+ 040 9247 £ 0.31

Table 4. Impact of model ensemble

IDN-30%

IDN-50%

w/o ensemble
w/ ensemble

92.57% / 1713 /90.15 £ 0.30
96.01% /1736 /92.59 £ 0.40  83.75% /809 /75.26 L 2.89

74.24% [/ 875/71.12 £ 0.84

Table 5. Impact of threshold

11D

non-IID (apir = 1)

IDN-30%

IDN-50%

IDN-30%

IDN-50%

T=050 9549% /4112
T=0.65 97.73% /3643
T=080 99.21% /2362

78.81% /3917
90.56% / 1800
94.77% 1 417

92.28% /2008
96.01% / 1736
97.79% / 1303

70.05% / 1876
83.75% / 809
85.56% / 250
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