

Nanjing University of Aeronautics and Astronautics

Federated Noisy Label Learning

Reporter: Tong Jin

Most existing studies assume that training data is **labeled correctly**.

Building a completely clean dataset with high-quality annotation is costly in realistic medical scenarios, as labeling medical data is **time-consuming** and **labor-intensive** requiring expertise.

It would unavoidably introduce noisy labels when hiring **non-professionals to label** or using **automatic labeling techniques**.

Directly learning with such noisy labels

Degrading the generalization performance

• Classification:

(1) **Class-conditional noise**: each instance from one class has a fixed probability of being assigned to another.

(2) **Instance-dependent noise**: a data sample is more likely to be mislabeled due to its content rather than the class label it belongs to.

• Method:

(1) **Loss correction**: aims to correct the loss by estimating the noise transition matrix, adjusting the example labels or weights.

(2) **Example selection**: separate clean examples from noisy ones based on the small-loss criterion and further consider recognized mislabeled examples as unlabeled ones to perform semi-supervised learning.

• Data Privacy and Inaccessibility:

In FL, the data is scattered in clients, and the global data cannot be **centrally accessed**. Noise processing methods that rely on global information cannot be implemented.

• Non-IID

There are **large differences in the distribution** of client data. Traditional methods assume that the data is IID, which leads to the failure of noise detection and correction.

• Client capability differences

The **computing resources** and **storage capacity** of clients are uneven. Complex local noise processing, such as generative adversarial network denoising, may exceed some client load capabilities.

• Differences in local noise levels

The **difference in the proportion or type of noise** between different clients is significant. The global unified noise processing strategy cannot adapt to all clients.

• Classification:

- (1) **Class-conditional noise**
- (2) Instance-dependent noise
- Method:
 - (1) Loss correction
 - (2) Example/Client selection
- Setting:
 - (1) Some clients are clean while others are not
 - (2) Each client has partially noisy data

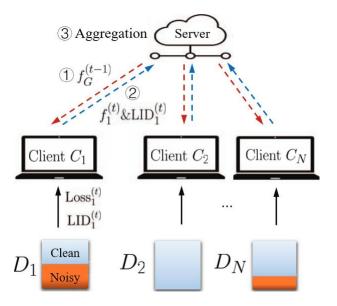
FedNoRo: Towards Noise-Robust Federated Learning by Addressing Class Imbalance and Label Noise Heterogeneity

Nannan Wu¹, Li Yu¹, Xuefeng Jiang², Kwang-Ting Cheng³ and Zengqiang Yan^{1*} ¹School of Electronic Information and Communications, Huazhong University of Science and Technology ²Institute of Computing Technology Chinese Academy of Sciences

²Institute of Computing Technology, Chinese Academy of Sciences ³School of Engineering, Hong Kong University of Science and Technology {wnn2000, hustlyu}@hust.edu.cn, jiangxuefeng21b@ict.ac.cn, timcheng@ust.hk, z_yan@hust.edu.cn

IJCAI 2023

Existing methods for noisy client detection propose to calculate an **average indicator** (e.g. loss) over all samples of each client as its feature and filter out the clients with abnormal features as noisy clients.



Less Effective in Real-World FL

25 42 1952 1952 1952

- Data is highly class-imbalanced from the global perspective.
- Data heterogeneous across clients affecting the calculation of indicators.
- Label noise is heterogeneous across clients in both strength (different noise rates) and pattern (various forms of label noise).

Eg. 1

Cancer-specialized hospital A (more malignant cases) General hospital B (more healthy cases)

A is more likely to produce an abnormal client-wise feature (e.g., large loss values similar to noisy clients) due to class imbalance (i.e., healthy >> malignant).

Eg. 2

Hospital C (more healthy cases)benign \rightarrow healthHospital D (more malignant cases)benign \rightarrow malignant

Though both labels are wrong, the loss values (produced by C would be much smaller than D, due to class imbalance (i.e., healthy>>malignant).

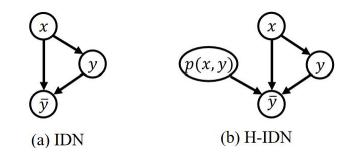
Noise Model

Define the global noise rate ρ as the proportion of noisy clients.

Local noise rate η_i (i.e., the proportion of noisy samples) follows the uniform distribution.

The pattern of noise samples: heterogeneous instance-dependent noise (H-IDN).

Definition 1 (H-IDN). *IDN is heterogeneous if noise transition probability is a function of local data distribution, i.e.*, $\Pr(\overline{Y} = \overline{y} \mid Y = y, X = x) = M_{\overline{y},y,x}(p_i(x,y))$, where $M_{\overline{y},y,x}$ denotes the noise transition matrix of instance x.



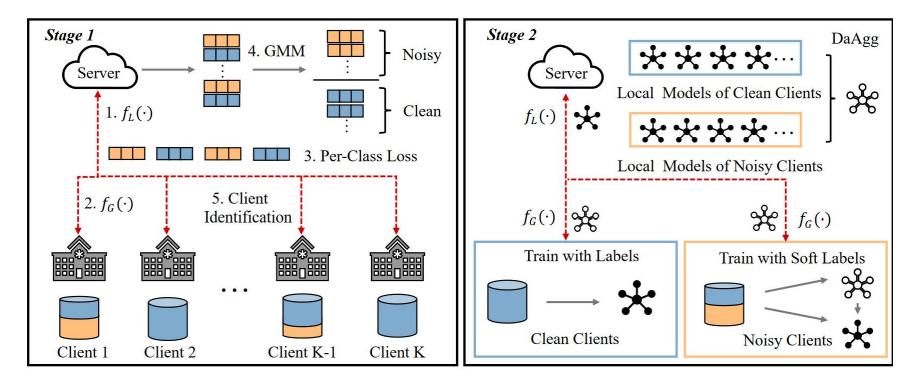
Algorithm 1 Noise Generation.

Input: Number of clients K; clean local datasets $\{D_k\}_{k=1}^K$; global noise rate ρ ; local noise rate distribution parameters η^l, η^u . 1: $\mathcal{I} =$ Randomly select ρK elements from [K]. 2: for i in \mathcal{I} do Initialize a network f_i . 3: Train f_i on the local dataset $D_i = \{(x_j, y_j)\}_{j=1}^{N_i}$. 4: Compute classification probabilities $p(Y | x) \in [0, 1]^{N_i \times C}$ for all samples in D_i . 5: Compute the misclassification probability $\widetilde{p}(x) \in$ 6: $[0,1]^{N_i}$ for each sample in D_i (Eq. 1). $\eta_i \sim U(\eta^l, \eta^u).$ 7: $\mathcal{N} = \text{Randomly select } \eta_i N_i \text{ elements from } [N_i] \text{ with}$ 8: the probability $\widetilde{p}(x) / \sum \widetilde{p}(x)$. ▷ Normalization for t in \mathcal{N} do 9: $\overline{y}_t = \text{Randomly select a different label from } \mathcal{Y}$ with 10: the probability $p(Y \mid x_t)$. Flip y_t to \overline{y}_t . \triangleright Add label noise 11: end for 12: 13: end for

Output: Local datasets after adding label noise $\{D_k\}_{k=1}^K$.

$$\widetilde{p}(x_j) = 1 - p(Y = y_j \mid x_j),$$

Methodology



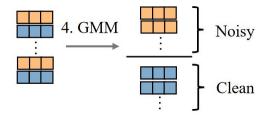
Overview of the proposed two-stage framework FedNoRo.

Train a warmup model for T1 rounds by FedAvg.

The average loss values of all classes on each client *i* denoted as $l_i = (l_i^1, l_i^2, ..., l_i^C)^T \in \mathbb{R}^C$

Considering the class-missing problem in heterogeneous data, a specific class c may not exist in client i, leading to a missing average loss value, which simply replaced by the minimum value of class c across all clients.

Normalized to
$$[0, 1]$$
: $l_i^c = \frac{l_i^c - \min_i l_i^c}{\max_i l_i^c - \min_i l_i^c}$.



• Local training phase

For clean clients, the vanilla cross-entropy loss is adopted to train each local model based on clean labels.

For noisy clients, a **knowledge distillation-based** training method is applied. Given any *x* and its output logit from the global model, a targeted probability distribution is calculated as

$$y_G = \operatorname{softmax}(\frac{f_G(x)}{T}),$$

 $\mathcal{L} = \lambda \mathcal{L}_{KL}(y_p, y_G) + (1 - \lambda) \mathcal{L}_{CE}(y_p, \overline{y}), \quad \lambda \text{ grows from 0 to } \lambda_{max}$

• Model aggregation phase

Distance-aware model aggregation is proposed, where a client-wise distance metric is:

$$d(i) = \min_{j \in S_c} ||w_i - w_j||_2,$$

Normalized to [0, 1]: $D(i) = \frac{d(i)}{\max_j d(j)}$.

Aggregation weight: $w_g = \sum_{i=1}^{K} \frac{N_i e^{-D(i)}}{\sum_{j=1}^{K} N_j e^{-D(j)}} w_i.$

Performance Results

Category	Methods	ρ	0.0	0	.2	0	.3	0	.4	0	.6
Category With	withious	(η^l, η^u)	(0.0, 0.0)	(0.3, 0.5)	(0.5, 0.7)	(0.3, 0.5)	(0.5, 0.7)	(0.3, 0.5)	(0.5, 0.7)	(0.3, 0.5)	(0.5, 0.7)
	FedAvg	Best	69.34	65.81	64.53	62.49	60.82	60.52	58.38	58.46	54.77
	TeuAvg	Last	68.92	65.33	63.97	62.10	60.23	60.05	56.79	56.88	50.35
FL	FedProx	Best	68.16	64.58	63.64	61.81	61.91	60.85	58.50	60.21	57.57
TE	Teuriox	Last	67.29	63.80	62.65	61.46	61.00	59.99	57.85	59.35	56.63
	FedLA	Best	73.56	69.45	69.28	66.84	64.84	66.60	62.39	63.90	58.78
	TCULA	Last	73.07	68.82	68.45	66.20	64.03	63.90	60.51	61.86	54.99
	RoFL	Best	-	42.57	40.42	40.64	39.87	40.35	35.60	39.68	35.35
	KUL	Last		42.19	40.30	40.95	39.27	40.25	35.39	40.18	35.47
	RHFL	Best	- 1	57.48	56.91	56.72	55.74	55.26	54.30	54.63	51.00
Denoise FL	KHIL	Last	-	57.05	56.46	55.75	52.19	54.71	52.08	52.53	49.64
Denoise I L	FedLSR	Best	-	55.99	55.28	54.44	52.27	52.48	48.20	50.89	43.30
	TeuLSK	Last	-	55.69	54.77	53.95	51.70	51.92	46.77	49.96	39.81
	FedCorr	Best	-	57.90	56.68	55.02	54.61	53.62	50.82	50.89	47.13
	reacon	Last	-	57.68	55.86	54.52	53.62	52.60	49.59	50.24	46.13
Joint	FedCorr+LA	Best	-	64.78	64.29	62.58	62.78	62.19	59.58	57.88	54.53
Joint	TCUCOII+LA	Last	-	63.99	63.55	61.90	61.87	61.30	60.06	57.17	53.92
Ours	FedNoRo	Best	-	70.59	70.64	70.14	69.35	70.69	69.30	67.55	63.83
Ours	FEUNORO	Last	-	70.18	69.81	69.29	68.47	70.14	68.87	67.10	63.29

Table 1: Quantitative BACC (%) comparison results on the ICH dataset under different noise rates. The best results are marked in bold.

Methods	ρ	0.0	0.4	0.6
Wiethous	(η^l, η^u)	(0.0, 0.0)	(0.5, 0.7)	(0.5, 0.7)
FedAvg	Best	69.09	58.23	54.35
Teurvg	Last	65.44	61.83	49.88
FedProx	Best	72.20	64.46	58.55
I CUI IOX	Last	69.60	60.13	49.87
FedLA	Best	72.55	66.34	61.20
TEULA	Last	68.72	61.18	56.11
RoFL	Best	-	28.45	28.86
KUL	Last	-	27.79	28.29
RHFL	Best	-	46.06	46.67
KHL	Last	-	44.04	45.09
FedLSR	Best	-	30.15	27.24
TEULSK	Last	-	29.11	26.08
FedCorr	Best	-	42.54	38.40
reacon	Last	-	41.12	37.17
FedCorr+LA	Best	-	60.38	55.40
reacon+LA	Last	=	59.16	54.27
EadNoDo (ouro)	Best	-	68.59	66.00
FedNoRo (ours)	Last	-	64.67	60.65

Table 2: Quantitative BACC (%) results on the ISIC 2019 dataset under different noise rates. The best results are marked in bold.

Experimental Results

Ablation Studies

Indicator	LA	Per-Class	Norm.	Re (%)	Pr (%)	MR (%)
		ICH, $\rho = 0.3$	-	=(0.3,0)		
LID	X	×	×	100.00	54.54	0.00
Conf.	×	×	×	16.66	8.33	0.00
Loss	X	×	×	94.58	57.12	0.00
Loss	~	×	××	100.00	47.14	0.00
Loss	×	\checkmark	×	97.19	90.63	85.77
Loss	~	\checkmark	×	99.48	97.78	96.93
Loss	1	\checkmark	~	99.70	98.76	98.28
		ICH, $\rho = 0.4$	l, (η^l,η^u)	=(0.3,0)	.5)	
LID	X	×	×	87.50	63.63	0.00
Conf.	×	×	×	37.50	25.00	0.00
Loss	×	×	×	78.80	60.57	0.00
Loss	1	×	×	89.41	80.46	0.00
Loss	×	~	×××	65.77	100.00	37.58
Loss	~	~	×	81.10	100.00	47.09
Loss	~	\checkmark	~	90.23	100.00	88.82

Table 3: Ablation study of the first stage in FedNoRo.

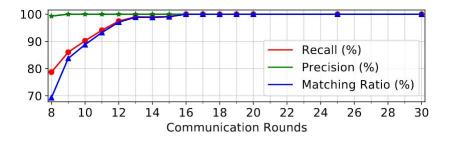


Figure 4: Ablation study of T_1 for warm-up training.

Noisy Clients	De-Noise Strategy		Туре	BACC (%)	
Noisy Chemis	\mathcal{L}_{KL}	DaAgg		ICH	ISIC
1	X	X	Best	66.60	61.20
v			Last	63.90	56.11
×	X	X	Best	69.67	64.94
		~	Last	68.07	59.17
1	X	1	Best	69.32	65.72
V		v	Last	68.18	58.60
1	1	X	Best	64.53	60.79
V	v		Last	64.01	43.57
1	1	1	Best	70.69	66.00
V	V	v	Last	70.14	60.65

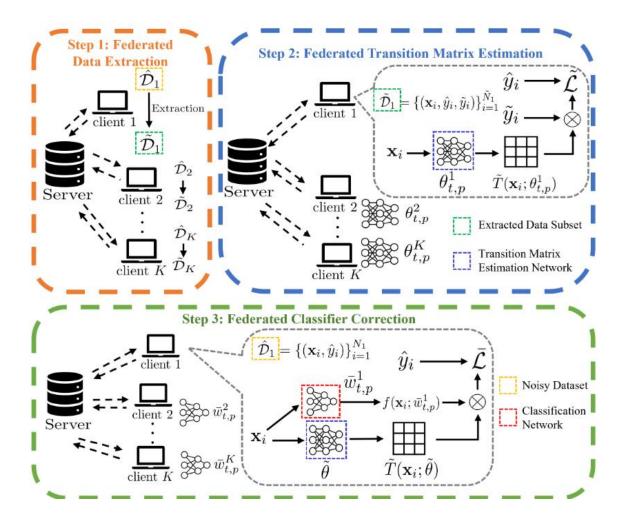
Table 4: Ablation study of the second stage in FedNoRo. Settings: $\rho=0.4$ and $(\eta^l, \eta^u)=(0.3, 0.5)$ for the ICH dataset; $\rho=0.6$, $(\eta^l, \eta^u)=(0.5, 0.7)$ for the ISIC dataset.

FEDERATED LEARNING WITH INSTANCE-DEPENDENT NOISY LABEL

Lei Wang, Jieming Bian, Jie Xu

Electrical and Computer Engineering, University of Miami, Coral Gables, FL 33146, USA

ICASSP 2024

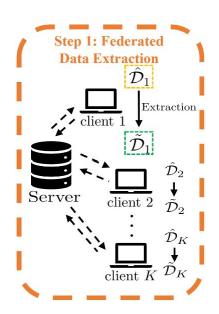


An overview of FedBeat

We define $T_{i,j}(x)$ the *i*, *j*-th element of instance-dependent noise transition matrix (IDNTM), representing the transition probability of a sample *x* with a clean label *i* transitioning to a noisy label *j*.

Thus, the noisy class-posterior probability can be inferred by the IDNTM and the clean class-posterior probability as follows:

$$P(\hat{Y} = j | X = \mathbf{x}) = \sum_{i=1}^{C} T_{i,j}(\mathbf{x}) P(Y = i | X = \mathbf{x}).$$



Initial training: T1 rounds, and each client performs P1 local steps during each round.

Weak global model: $\bar{w} = \sum_k N_k w_{T_1,P_1}^k / N$

It is returned to the clients to generate pseudo-labels on the training data samples

Bayesian model ensemble:

Denoting the average model $\mu = \bar{w}$, the server then calculates the standard deviation Σ of the local models

$$\Sigma = \operatorname{diag}\left(\sum_{k} \frac{N_k}{N} \left(w_{T_1,P_1}^k - \mu\right)^2\right).$$

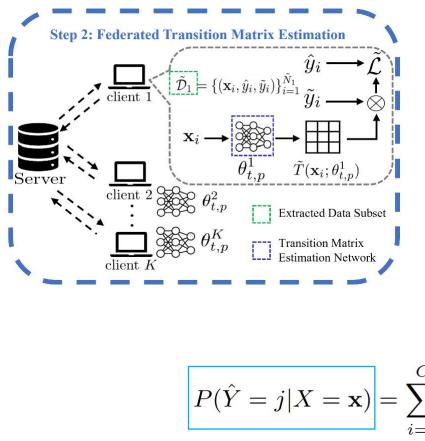
Sample *M* ensemble models $w^{k,(m)} \sim \mathcal{N}(\mu, \Sigma), m = 1, \dots, M$.

$$\tilde{f}(x_i) = \frac{1}{M} \sum_{m=1}^{M} f\left(\mathbf{x}_i; w^{k,(m)}\right) \qquad \tilde{y}_i = \arg\max_c \tilde{f}_c(\mathbf{x}_i)$$

Extracted dataset: $\tilde{\mathcal{D}}_k = \{ (\mathbf{x}_i, \hat{y}_i, \tilde{y}_i); i \in \hat{\mathcal{D}}_k \text{ and } \tilde{f}_{\tilde{y}_i}(\mathbf{x}_i) \geq \tau \}$

Step2. Federated Transition Matrix Estimation

When provided with an input example x, the estimation network θ generates the IDNTM, which contains the probability of transitioning from the clean distribution to the noisy distribution.



T2 rounds training, and each client performs P2 local steps during each round.

$$\theta_{t,0}^k = \theta_t$$

Local training loss function

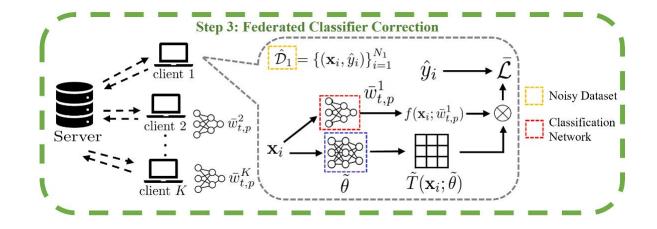
$$\tilde{\mathcal{L}}(\theta_{t,p}^{k}) = -\frac{1}{\tilde{N}_{k}} \sum_{i=1}^{\tilde{N}_{k}} \sum_{c=1}^{C} \hat{\boldsymbol{y}}_{\boldsymbol{i},c} \log\left(\left[\tilde{\boldsymbol{y}}_{\boldsymbol{i}}^{\mathrm{T}} \cdot \tilde{T}\left(\mathbf{x}_{i}; \theta_{t,p}^{k}\right)\right]_{c}^{\mathrm{T}}\right)$$

Global model update

$$\theta_{t+1} = \frac{1}{\tilde{N}} \sum_{k} \tilde{N}_k \theta_{t,P_2}^k$$

$$P(\hat{Y} = j | X = \mathbf{x}) = \sum_{i=1}^{C} T_{i,j}(\mathbf{x}) P(Y = i | X = \mathbf{x}).$$

Step3. Federated Classifier Correction



Once the estimation network $\partial has been trained, it can be employed to correct the weak global classification model <math>\overline{w}$ derived from step 1.

T3 communication rounds for global model aggregation, with each round consisting of P3 local steps.

Classifier correction loss function:

$$\bar{\mathcal{L}}(\bar{w}_{t,p}^{k}) = -\frac{1}{N_{k}} \sum_{i=1}^{N_{k}} \sum_{c=1}^{C} \hat{\boldsymbol{y}}_{i,c} \log\left(\left[f\left(\mathbf{x}_{i}; \bar{w}_{t,p}^{k}\right)^{\mathrm{T}} \tilde{T}\left(\mathbf{x}_{i}; \tilde{\theta}\right)\right]_{c}^{\mathrm{T}}\right)$$
$$P(\hat{Y} = j | X = \mathbf{x}) = \sum_{i=1}^{C} T_{i,j}(\mathbf{x}) P(Y = i | X = \mathbf{x}).$$

Performance Results

	II	D	non-IID ($\alpha_{Dir} = 1$)		
	IDN-30%	IDN-50%	IDN-30%	IDN-50%	
FedAvg	73.10 ± 0.97	61.99 ± 1.82	61.41 ± 3.26	47.64 ± 1.56	
FedProx	71.97 ± 1.16	58.66 ± 0.96	61.57 ± 1.65	47.74 ± 0.95	
BLTM-local	45.75 ± 0.55	36.25 ± 0.58	57.64 ± 2.01	49.13 ± 1.27	
FedCorr	65.90 ± 1.50	54.41 ± 0.89	62.23 ± 2.34	50.46 ± 2.29	
FedBeat(ours)	$\textbf{81.58} \pm \textbf{0.24}$	$\textbf{74.51} \pm \textbf{2.71}$	$\textbf{72.61} \pm \textbf{0.31}$	$\textbf{58.44} \pm \textbf{3.53}$	

 Table 1. Test accuracy on CIFAR-10 with different IDN rates

Table 2. Test accuracy on SVHN with different IDN rates

	II	D	non-IID ($\alpha_{Dir} = 1$)		
-	IDN-30%	IDN-50%	IDN-30%	IDN-50%	
FedAvg	88.35 ± 0.91	74.24 ± 0.24	83.79 ± 0.47	61.86 ± 2.98	
FedProx	89.46 ± 0.23	71.81 ± 2.34	84.64 ± 0.21	64.06 ± 1.13	
BLTM-local	71.14 ± 1.39	52.26 ± 0.67	70.44 ± 1.34	57.13 ± 2.78	
FedCorr	86.18 ± 3.52	70.56 ± 4.63	81.20 ± 1.61	59.37 ± 3.15	
FedBeat(ours)	$\textbf{94.59} \pm \textbf{0.25}$	$\textbf{87.97} \pm \textbf{2.90}$	$\textbf{92.59} \pm \textbf{0.40}$	$\textbf{75.26} \pm \textbf{2.89}$	

Ablation Studies

	$\alpha_{Dir} = 0.5$	$\alpha_{Dir} = 1$	$\alpha_{Dir} = 5$
FedAvg	81.46 ± 1.66	83.79 ± 0.47	84.98 ± 0.72
FedProx	82.23 ± 1.42	84.64 ± 0.21	84.18 ± 1.01
BLTM-local	73.43 ± 0.93	70.44 ± 1.34	60.08 ± 0.68
FedCorr	76.42 ± 1.88	81.20 ± 1.61	82.61 ± 2.87
FedBeat(ours)	$\textbf{92.12} \pm \textbf{0.49}$	$\textbf{92.59} \pm \textbf{0.40}$	$\textbf{92.47} \pm \textbf{0.31}$

Table 3. Test accuracy on SVHN with IDN-30% varying α_{Dir}

Table 4.	Impact	of model	ensemble
Teroite	inpace	or mouter	emoennore

	IDN-30%	IDN-50%
w/o ensemble w/ ensemble	92.57% / 1713 / 90.15 ± 0.30 96.01% / 1736 / 92.59 ± 0.40	74.24% / 875 / 71.12 \pm 0.84 83.75% / 809 / 75.26 \pm 2.89

Table 5. Impact of threshold

	П	D	non-IID ($\alpha_{Dir} = 1$)		
	IDN-30%	IDN-50%	IDN-30%	IDN-50%	
$\tau = 0.50$	95.49% / 4112	78.81% / 3917	92.28% / 2008	70.05% / 1876	
$\tau = 0.65$	97.73% / 3643	90.56% / 1800	96.01% / 1736	83.75% / 809	
$\tau = 0.80$	99.21% / 2362	94.77% / 417	97.79% / 1303	85.56% / 250	

Nanjing University of Aeronautics and Astronautics

THANKS