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, Introduction

* Multi-label image recognition is a fundamental task in computer vision, aiming to predict all objects
present in an image.

* However, this task is challenging as the combinations of labels can be tremendous. Modelling label
correlations to reduce the search space

* An common assumption is: the training and test sets follow independent and identically distributions
(i.i.d.), and the label correlations are consistent. graph structures or attention mechanisms have been

successfully employed.
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Figure 1: Illustration of the concept and effect of contextual bias in training. It is common that
“Person”, “Dog”, and “Cat” co-occur in training images (we only show one image), while the test
image may only contain “Person” and “Dog”. Excessive reliance on the label co-occurrence in the
training set may lead the recognition model to predict the “Cat” solely based on the presence of

“Person” and “Dog”.
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Introduction

a few researchers attempted to alleviate the effects of contextual bias by
* decorrelating the feature representations of a category from its co-occurring context
* removing the contextual bias in features with causal mechanisms.

We pursue causal correlations (e.g., from “Person” to “Clothes”) to mine contextual cues for
recognition, while suppressing spurious correlations (e.g., from “Person” to “Cat”) which are

associated by confounders (e.g., the overall scene)



, Motivation of Causal Correlations
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a calculable formal definition: if P(Y |do(X)) > P(Y ), then a causal
correlation exists from X to Y in a probability-raising sense.

] pv)
L | P(Y|do{X=person))
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Figure 2: Illustration of causal label correlations and spurious correlations revealed by causal

intervention, in a probability-raising sense that if P(Y |do(X)) > P(Y), then a causal correlation
exists from X (“Person”) to Y (categories in this figure).
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Figure 3: (a): Causal correlation between label X ‘and Y, which is not affected by confounder set C.
(b): Spurious correlation, where the co-occurence of X and Y is caused by confounder set C.



, Motivation of Causal Correlations
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* backdoor adjustment:  p(y|do(X)) = ZP(YIX’ C =c)P(C = ¢)

As “physical” intervention that puts Y at any context is almost impossible, backdoor
adjustment is typically applied for “virtual” intervention.

Here the key idea is to cut off the link from confounder C to cause X, and stratify C
into pieces C ={c},making C no longer correlated with X.
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Figure 4: The overall framework of our proposed method.

(a)the branch of decoupled label-specific features
(b)the branch of causal label correlations.

« final prediction confidence score: 9 =1/2" Geausar + 1/2 - Ydecoupte € RY

e finalLoss: L= yglog(d)+ (1 —yg)log(l—9)

where y4; = {0, 1} is ground truth label vector of the input image.



<%
Il
ﬁ;\’\\\\\\\\\ m‘//////////—f

' Approach

s,

=

iy
W

& %

iy

&

N

K/

Z,7 1952 * §

iy, ””"“““\\‘
Ay

Uua

Decoupling Label-Specific Features

F = fcnn(I) X = fdecode'r(Q; F) Qdecou;ﬂle — U(ffcl(Q))

Causal intervention based on label-specific features
P(Y;|X;,C = c) = o(fy,(z;,c))

P(Yj|do(X;)) = Ec[o(fy, (i, ¢))]
~ o (e[ fy, (s, ¢)]) Z.=X +ec,
=o(}_ £y, (xi.0) - P(0)) '

ﬁgausa,! = fme’rge([P(}Hdo(Xl)ﬂ :P(}}ldO(XN)])
= fmerge([g(z f’yj (.’131?6) ) P(C))r "'76(2 -fyj ("BNJC) ’ P(C))])

- ~a(y fy,(X,0) - P(c))
let X = [z1,...,2n] € R¥*P denote all label-specific features g

Effective modeling for all fyj(xi,c) by cross-attention

— U(Z f_fc2 (fcross__atten(yju ZC? ZC)) ’ P(C)) ’
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Modeling the confounders

clustering spatial features with K-means algorithm, we obtain a compact set of
prototypes to represent potential confounders like objects, scenes and textures.
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CommonSetting

“Exclusive” denotes
virtual co-occurrence
where labels appearing
simultaneously in the
training set do not co-
occur in the test set.
“Co-occur” represents
the objects co-occurring
in both the training and
test sets.

“All” is the average
performance of all
categories.

Table 1: Performance comparison in the common setting on the COCO-Stuff and DeepFashion

datasets.

COCO-Stuff (mAP)

Deepfashion (top-3 recall)

Method Exclusive Co-occur All | Exclusive Co-occur All
Q2L [19] 235 G1.1 52 12.8 26.3 26.1
ADD-GCN [12] 20.6 64.8 252 8.2 22.6 23.5
ML-GCN [4] 18.6 67.1 55.1 10.3 23.7 24.0
SSGRL [28] [18.T] 666 549 | 79 228 231
C-Tran [[13] 224 6.1 554 11.4 24.6 24.8
CCD [17] 23.8 65.3 55.9 11.5 24.2 24.6
TDRG [38]] 20.0 64.8 56.2 8.1 22.9 23.6
IDA [18] 23.2 64.9 57.0 11.3 25.1 254

CAM-Based [14] 26.4 64.9 — — — -

feature-split [[14] 28.8 66.0 - 9.2 20.1 =
Baseline (R50) 21.9 655 55.0 11.5 24.1 24.1
Ours 29.7 69.6 60.6 14.6 27.4 28.8
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Cross-dataset Setting

Table 2: mAP Performance comparison in the cross-dataset setting on the MS-COCO and NUS-

WIDE datasets.

Method MS-COCO — NUS-WIDE|NUS-WIDE — MS-COCO
ADD-GCN [12] 81.8 77.2
ML-GCN [4] 81.4 77.2
SSGRL [28] 80.2 76.1
C-Tran 80.9 76.9
CCD [17] 81.9 78.3
Q2L [19] 82.1 78.6
IDA [18] 82.3 78.9
CAM-Based [14] 81.0 77.8
feature-split [14]] 81.9 78.3
Baseline (R101) 81.1 77.1
Ours 83.2 80.2




Ablation Studies
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Table 3: The impacts of different modules.

Decouple Causal | Exclusive Co-occur All
21.9 655 550

V4 22.1 67.0 56.8

Vv Vv 29.7 69.6 60.6

Table 5: The impact of backbones for clustering.

Confounder Backbone

Exclusive Co-occur All

ResNet-50
ResNet-101
BEIT3-Large

29.7 69.6 60.6
29.6 69.9 60.5
294 69.7  60.5

Table 7: Different implementations of Eq.

Method Exclusive Co-occur All
Linear 274 69.1 60.0
Ours 29.7 69.6 60.6

Table 4: The impacts of clustering center num-

ber.
Number | Exclusive Co-occur All
20 26.9 68.9 59.6
40 26.8 69.3 60.1
60 29.3 69.8 60.2
80 29.7 69.6 60.6
100 29.5 69.4 60.5

Table 6: The impact of different modeling
approaches for confounders.

Method | Exclusive Co-occur All
Random 221 66.3 56.1
Early 27.8 69.1 60.1
Label 28.0 69.3 60.3
K-means 29.7 69.6 60.6
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