

Nanjing University of Aeronautics and Astronautics

WHAM: Reconstructing World-grounded Humans with Accurate 3D Motion

Soyong Shin $^1\,$, Juyong $\rm Kim^1$, Eni Halilaj $^1\,$, Michael J. $\rm Black^2$

Carnegie Mellon University¹ Max Planck Institute for Intelligent System²

CVPR2024

The limitations of current methods:

 Most methods estimate the human in camera coordinates, and often have unsatisfactory performance in global coordinates.

The limitations of current methods:

- The most accurate methods rely on computationally expensive optimization pipelines, limiting their use to offline applications.
- Existing video-based methods are surprisingly less accurate than single-frame methods.

Overview of WHAM

Uni-directional Motion Encoder and Decoder:

Motion Encoder

 ${I^{(t)}}_{t=0}^{T}$: Input video data ${x_{2D}^{(t)}}_{t=0}^{T}$: 2D keypoints detected by ViTPose^[1]

Motion features:

$$\phi_m^{(t)} = E_M(x_{2D}^{(0)}, x_{2D}^{(1)}, ..., x_{2D}^{(t)} | h_E^{(0)})$$

[1]:Yufei Xu, Jing Zhang, Qiming Zhang, and Dacheng Tao. ViTPose: Simple vision transformer baselines for human pose estimation. In Advances in Neural Information Processing Systems, 2022.

Uni-directional Motion Encoder and Decoder:

Motion Decoder

 $(\boldsymbol{\theta}^{(t)}, \boldsymbol{\beta}^{(t)})$: SMPL parameters

Modeling parameters: $(\boldsymbol{\theta}^{(t)}, \boldsymbol{\beta}^{(t)}, \boldsymbol{c}^{(t)}, \boldsymbol{p}^{(t)}) = \boldsymbol{D}_{\boldsymbol{M}}(\widehat{\boldsymbol{\phi}}_{m}^{(0)}, ..., \widehat{\boldsymbol{\phi}}_{m}^{(t)} | \boldsymbol{h}_{\boldsymbol{D}}^{(0)})$

 $c^{(t)}$: weak-perspective camera translation

 $p^{(t)}$: foot-ground contact probability

Use Neural Initialization that uses MLP to initialize the hidden state, similar to PIP^[2]

[2]:Xinyu Yi, Yuxiao Zhou, Marc Habermann, Soshi Shimada, Vladislav Golyanik, Christian Theobalt, and Feng Xu. Physical inertial poser (pip): Physics-aware real-time human motion tracking from sparse inertial sensors. In IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2022

Motion and Visual Feature Integrator:

The feature of integration:

 $\widehat{\phi}_m^{(t)} = \phi_m^{(t)} + F_I(concat(\phi_m^{(t)}, \phi_i^{(t)}))$

 $\phi_i^{(t)}$: Image feature extracted by Image Encode E_I

 $\phi_m^{(t)}$: Motion feature extracted by Motion Encode E_M

Global Trajectory Decode:

 $\phi_m^{(t)}$: Motion feature extracted by Motion Encode E_M $w^{(t)}$: The angular velocity of the camera

$$(\Gamma_{0}^{(t)}, \boldsymbol{v}_{0}^{(t)}) = \boldsymbol{D}_{T}(\phi_{m}^{(0)}, \boldsymbol{w}^{(0)}, ..., \phi_{m}^{(t)}, \boldsymbol{w}^{(t)})$$

 $\Gamma_{\mathbf{0}}^{(t)}$: The rough global root orientation

 $\boldsymbol{v}_{\boldsymbol{0}}^{(t)}$: The root velocity

Contact Aware Trajectory Refinement:

First, we adjust the ego-centric root velocity to $\widetilde{v}^{(t)}$ to minimize foot sliding

$$\widetilde{\boldsymbol{v}}^{(t)} = \boldsymbol{v}_{0}^{(t)} - (\boldsymbol{\Gamma}_{0}^{(t)})^{-1} \overline{\boldsymbol{v}}_{f}^{(t)}$$

Where $\overline{v}_{f}^{(t)}$ is the averaged velocity of the toes and heels in world coordinates when their contact probability $p^{(t)}$ is higher than a threshold.

Contact Aware Trajectory Refinement:

$$(\Gamma^{(t)}, \boldsymbol{v}^{(t)}) = \boldsymbol{R}_{T}(\phi_{m}^{(0)}, \Gamma_{0}^{(0)}, \widetilde{\boldsymbol{v}}^{(0)}, ..., \phi_{m}^{(t)}, \Gamma_{0}^{(t)}, \widetilde{\boldsymbol{v}}^{(t)})$$

 $\Gamma^{(t)}$: Global root orientation

$$\tau^{(t)}$$
: Global root velocity

$$\tau^{(t)} = \sum_{i=0}^{t-1} \Gamma^{(i)} \boldsymbol{v}^{(i)}$$

WHAM' s Two-Stage Training Scheme

Quantitative (3D Human Motion Recovery):

		3DPW (14)			RICH (24)			EMDB (24)					
	Models	PA-MPJPE	MPJPE	PVE	Accel	PA-MPJPE	MPJPE	PVE	Accel	PA-MPJPE	MPJPE	PVE	Accel
	SPIN [20]	59.2	96.9	112.8	31.4	69.7	122.9	144.2	35.2	87.1	140.7	166.1	41.3
0	PARE* [17]	46.5	74.5	88.6	-	60.7	109.2	123.5	-	72.2	113.9	133.2	-
per-fram	CLIFF* [24]	43.0	69.0	81.2	22.5	56.6	102.6	115.0	22.4	68.3	103.5	123.7	24.5
	HybrIK* [22]	41.8	71.6	82.3	20	56.4	96.8	110.4		65.6	103.0	122.2	-
	HMR2.0 [6]	44.4	69.8	82.2	18.1	48.1	96.0	110.9	18.8	60.7	98.3	120.8	19.9
	ReFit* [49]	40.5	65.3	75.1	18.5	47.9	80.7	92.9	17.1	58.6	88.0	104.5	20.7
	TCMR* [5]	52.7	86.5	101.4	6.0	65.6	119.1	137.7	5.0	79.8	127.7	150.2	5.3
	VIBE* [16]	51.9	82.9	98.4	18.5	68.4	120.5	140.2	21.8	81.6	126.1	149.9	26.5
	MPS-Net* [50]	52.1	84.3	99.0	6.5	67.1	118.2	136.7	5.8	81.4	123.3	143.9	6.2
	GLoT* [42]	50.6	80.7	96.4	6.0	65.6	114.3	132.7	5.2	79.1	119.9	140.8	5.4
temporal	GLAMR [55]	51.1	-	Ξ.	8.0	79.9	-	=	107.7	73.8	113.8	134.9	33.0
	TRACE* [43]	50.9	79.1	95.4	28.6	-	100	22	- T	71.5	110.0	129.6	25.5
	SLAHMR [53]	55.9	120	\geq	_	52.5	<u>_</u>		9.4	69.7	93.7	111.3	7.1
	PACE [19]	-	-	-		49.3	-	$\widetilde{\mathcal{A}}_{i}$	8.8			-	-
	WHAM (Res)*	40.2	62.7	75.1	6.3	51.8	89.5	103.2	5.0	57.8	84.0	99.7	5.2
	WHAM (HR)*	39.0	62.6	74.8	6.4	49.1	84.6	96.4	5.2	57.1	85.7	103.2	5.6
	WHAM (ViT)*	35.9	57.8	68.7	6.6	44.3	80.0	91.2	5.3	50.4	79.7	94.4	5.3

Qualitative (3D Human Motion Recovery):

Quantitative (3D Global Trajectory Recovery):

	EMDB 2						
Models	WA-MPJPE ₁₀₀	W-MPJPE ₁₀₀	RTE	Jitter	FS		
DPVO (+ HMR2.0) [6, 45]	647.8	2231.4	15.8	537.3	107.6		
GLAMR [55]	280.8	726.6	11.4	46.3	20.7		
TRACE [43]	529.0	1702.3	17.7	2987.6	370.7		
SLAHMR [53]	326.9	776.1	10.2	31.3	14.5		
WHAM (w/DPVO [45])	135.6	354.8	6.0	22.5	4.4		
WHAM (w/DROID [44])	133.3	343.9	4.6	21.5	4.4		
WHAM (w/ GT gyro)	131.1	335.3	4.1	21.0	4.4		

Qualitative (3D Global Trajectory Recovery):

Qualitative (3D Global Trajectory Recovery):

Ablation Study

	EMDB 2									
Models	PA-MPJPE	MPJPE	WA-MPJPE ₁₀₀	W-MPJPE ₁₀₀	RTE	Jitter	FS			
w/o F _I	44.2	69.0	147.6	377.9	6.3	23.1	5.5			
w/o lifting	60.3	83.0	238.0	693.0	11.5	24.5	5.0			
w/o NI	40.4	66.3	142.7	368.1	6.8	22.3	4.6			
w/o w	39.1	62.0	156.5	422.0	10.1	22.1	5.0			
w/o traj. ref.	38.2	59.3	154.7	407.5	6.3	18.8	6.5			
WHAM (Ours)	38.2	59.3	135.6	354.8	6.0	22.5	4.4			

Thank you for watching!