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Nighttime Flare Removal

Lens flare 1s an optical phenomenon in which intense
light 1s scattered and/or reflected in an optical system.

It leaves a radial-shaped bright area and light spots on

Input

the captured photo. The effects of flares are more
severe in the nighttime environment due to the
existence of multiple artificial lights. This

phenomenon may lead to low contrast and suppressed

Output

details around the light sources, degrading the image’s

visual quality and the performance of vision

algorithms.



Motivation

Existing methods often fail to adequately address the differences between flare-affected and non-flare-affected
regions when processing images. This oversight can easily lead to incomplete removal or overprocessing of
flare regions, as well as erroneous processing of non-flare-affected areas, resulting in discrepancies between

the visual quality of the reconstructed images and the actual scenes.
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Motivation

(a) Input (c) Flare7K (d) Flare7K++ (e) Ours

Fig. 1. (a) Real-world flare-corrupted images without ground truth provided by Dai et al.[1]. (b) Visualization of the proposed Flare Location Prior Guidance
(LPG), which can identify and effectively localize flare signals. (¢) The flare removal effect of the method Flare7K[1] in the field of flare removal. (d) The
flare removal effect of the method Flare7K++[5] in the field of flare removal. (e¢) The flare removal effect of our proposed method. The red box delineates
an enlarged area within the image, with arrows indicating the locations of the defects.



Contributions

* Flare Location Prior Guidance: we considered the critical impact of differentiating between flare-
affected and nonflare-affected regions on image reconstruction performance, and subsequently
propose Location Prior Guidance (LPG). This method integrates learned flare location information
into the network through Location Prior Injection (LPI), guiding the model to effectively focus on

flare regions within the image and significantly enhancing flare removal performance.

* Frequency and Spatial Domain Interaction Learning: To integrate the flare location information
learned by LPG, we introduce the LPFSformer. The designed FCB and STB modules enable the
LPFSformer to effectively perceive and distinguish flare features within images, thereby allowing

targeted processing of flare-affected regions, which is crucial for flare removal.

* SOTA Performance: Extensive benchmark experiments demonstrate that our method outperforms
existing stateof-the-art methods in terms of performance and shows excellent generalization ability in

real-world scenarios.



Proposed Method

Task-specific priors

Dai et al. introduced a novel optical center symmetric prior, specifically designed for reflective flare. However, it relies on the
assumption that most smartphone cameras satisfy the optical center symmetry prior, a condition that does not always apply to
certain professional cameras.

In contrast, our LPG is specifically designed to address scattered flare. It locates scattered flare by capturing flare features within
the image, enabling effective localization without the constraints of the optical center symmetry prior. As a result, the LPG i1s more

flexible and robust in real-world scenarios.
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[1] Dai, Y., Luo, Y., Zhou, S., Li, C., Loy, C.C.: Nighttime smartphone reflective flare removal using optical center symmetry prior. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 20783-20791 (2023)



Proposed Method

Overall pipeline
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Fig. 2. The overall architecture of the proposed Transformer network for flare removal in night-time images (LPFSformer). It primarily includes: (1) Location
Prior Guidance (LPG), (2) Location Prior Injection Module (LLPT), (3) Coupled Module for Joint Learning in Frequency and Spatial Domains (FSIM), which
consists of Frequency Convolution Block (FCB) and Sparse Transformer Block (STB), and (4) Global Hybrid Feature Compensator (GHFC).
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Proposed Method
The Location Prior Guidance (LPG)
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We designed a ResBlock combination for flare feature extraction. Additionally,
we introduced recursive expansion in the ResBlock stages, enabling the
progressive learning of flare information while reducing network parameters.
The LPG network consists of four components: (1) a convolutional layer f,,, (2)
a convolutional Long Short-Term Memory (LSTM) layer as a recurrent layer

f ccurrents (3) multiple residual blocks f.., and (4) a convolutional block f_,.

FFL‘S = fiﬂ(Iaﬁk—l)a k = 1:-“':N:I
gk = fr'e{:u*r'rr::”n,t(gk—l 3 Fka) ;
Fk = fm;,.",(frr-:.@ (gk))-.
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Fig. 2. The overall architecture of the proposed Transformer network for flare removal in night-time images (LPFSformer). It primarily includes: (1) Location
Prior Guidance (LPG), (2) Location Prior Injection Module (LPT), (3) Coupled Module for Joint Learning in Frequency and Spatial Domains (FSIM), which
consists of Frequency Convolution Block (FCB) and Sparse Transformer Block (STB), and (4) Global Hybrid Feature Compensator (GHFC).

The Location Prior Injection (LPI)
When the flare color is similar to the
background tone, directly integrating LPG
priors often results in suboptimal removal of
flare artifacts. This 1s because, the contrast
between flare-affected and non-flare-affected
regions is insufficiently pronounced. Inspired
by this observation, we specifically designed
LPI. LPI further updates the prior knowledge
in a residual manner with attention weights
then generated based on the updated prior
knowledge.
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Frequency and Spatial Domain Interaction Learning
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Fig. 2. The overall architecture of the proposed Transformer network for flare removal in night-time images (LPFSformer). It primarily includes: (1) Location
Prior Guidance (LPG), (2) Location Prior Injection Module (LPT), (3) Coupled Module for Joint Learning in Frequency and Spatial Domains (FSIM), which
consists of Frequency Convolution Block (FCB) and Sparse Transformer Block (STB), and (4) Global Hybrid Feature Compensator (GHFC).

The Frequency-Space Interaction

Module (FSIM)
Frequency Convolution Block (FCB):

The introduction of the FCB can effectively enhance
the frequency representation of weak flare-affected
regions in the image, thereby improving the
network’s locality in the frequency domain.

Sparse Transformer Block (STB):

Due to the standard Transformer’s use of all tokens
to globally compute self-attention, it may involve
noisy interactions between unrelated features, which
is not ideal for nighttime flare removal tasks. The
STB can focus on the most relevant non-local

information at each scale, enabling more accurate

representations.



Proposed Method

Training details

In the first phase, we train the proposed the LPG by cropping the input images to 384 X 384. The
location priors learned by LPG are compared with grayscale images of pure flare provided by the
Flare7K++ synthetic pipeline, and optimization is performed using the L, loss function. After
training, the obtained prior is used as the image preprocessing module for the second-phase flare
removal model.

In the second phase, we train the flare removal model, LPFSformer, with images cropped to 384
X 384 X 3, performing 600K iterations on the 24K Flickr dataset. We combine reconstruction
loss L, and perceptual loss L, for joint supervision during training. The final loss function is

expressed as:

Ezwl *Ll —|—Ld2>I<Lp€T.

setting the weights o; of both the reconstruction loss L, and the perceptual loss L, to 0.5.



Experiments

TABLE 1
QUANTITATIVE RESULTS ON REAL-WORLD NIGHTTIME FLARE IMAGES. "*” DENOTES MODELS WITH REDUCED PARAMETERS
DUE TO THE LIMITED GPUMEMORY. THE BEST RESULT IS HIGHLIGHTED IN RED AND THE SECOND BEST RESULT IS HIGHLIGHTED IN BLUE.

Dataset Flare7K: Real_test
Metrics PSNRT SSIMT LPIPS| G-PSNRT S-PSNRT Params (M) MACs (G)
Input 22.561 0.857 0.0777 19.556 13.105 . .
Sharma [71] 20.492 0.826 0.1115 17.790 12.648 22.365 285.12
Previous Data Synthesis Pipelines Wu [29] 24.613 0.871 0.0598 21.772 16.728 34.526 261.901
Flare7K [1] 26.978 0.890 0.0466 23.507 21.563 20.429 159.643
U-net [16] 27.189 0.894 0.0452 23.527 22.647 34.527 261.953
HINet [17] 27.548 0.892 0.0464 24.081 22.907 88.674 685.127
MPRNet* [18] 27.036 0.893 0.0481 23.490 22.267 3.642 567.187
Flare7K++ Pipeline[5] Restormer® [19] 27.597 ().897 0.0447 23.828 22.452 2981 57.975
e Uformer [20] 27.633 0.894 0.0428 23.949 22.603 20.429 159.643
Internlmage [72] 27.432 0.892 0.0488 23.623 22.420 59.015 044.246
GRL [73] 27.642 0.895 0.0475 23.853 22.523 19.775 1108.47
Kotp and Torki [33] | 27.662 0.897 0.0422 23.987 22.847 129.306 271.419
LPFSformer(Ours) 28.238 0.905 0.0422 24.793 23.876 13.733 525.442
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Fig. 3. Visual Quality Comparison on the Flare7K++ Real Dataset. We selected the high-performing Uformer[20] as the baseline network for both Flare7K[1]
and Flare7K++|5] datasets. Additionally, we introduced Internlmage[72], GRL[73] and Kotp and Torki|33], trained using the Flare7K++ pipeline, for a
comprehensive comparison. The colored box delineates the enlarged area corresponding to the region within the image.



Experiments TABLE 11

PERFORMANCE ANALYSIS OF ABLATION EXPERIMENTS FOR LPG AND
THE EFFECTIVE FLARE REMOVAL MODULES. THE BEST RESULT IS

Ablation Study HIGHLIGHTED.

Model PSNRT SSIMT LPIPS| G-PSNRT S-PSNRT
W/o LPG | 28.131 0900 0.0433  24.492 23.492
W/o LPI | 28.183 0.904 0.0423  24.744 23.837
W/o FCB | 27.950 0.903 0.0423  24.315 23.541

W/o GHFC | 28.103 0.903 0.0424  24.512 23.316
LPFSformer | 28.238 0.905 0.0422  24.793 23.876
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.................
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Fig. 6. Visual results of ablation for LPG. The LPG localization results presented in grayscale.



