LPFSformer: Location Prior Guided Frequency and Spatial Interactive Learning for Nighttime Flare Removal

Guang-Yong Chen, Wei Dong, Guodong Fan, Jian-Nan Su, Min Gan and C. L. Philip Chen

TCSVT, 2024

Nighttime Flare Removal

Lens flare is an optical phenomenon in which intense light is scattered and/or reflected in an optical system. It leaves a radial-shaped bright area and light spots on the captured photo. The effects of flares are more severe in the nighttime environment due to the existence of multiple artificial lights. This phenomenon may lead to low contrast and suppressed details around the light sources, degrading the image's visual quality and the performance of vision algorithms.

Motivation

Existing methods often fail to adequately address the differences between flare-affected and non-flare-affected regions when processing images. This oversight can easily lead to incomplete removal or overprocessing of flare regions, as well as erroneous processing of non-flare-affected areas, resulting in discrepancies between the visual quality of the reconstructed images and the actual scenes.

[1] Dai, Y., Li, C., Zhou, S., Feng, R., Luo, Y., Loy, C.C.: Flare7k++: Mixing synthetic and real datasets for nighttime flare removal and beyond. arXiv preprint arXiv:2306.04236 (2023)
[2] Zhang, D., Ouyang, J., Liu, G., Wang, X., Kong, X., Jin, Z.: Ff-former: Swin fourier transformer for nighttime flare removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2824–2832 (2023)

Motivation

Fig. 1. (a) Real-world flare-corrupted images without ground truth provided by Dai et al.[1]. (b) Visualization of the proposed Flare Location Prior Guidance (LPG), which can identify and effectively localize flare signals. (c) The flare removal effect of the method Flare7K[1] in the field of flare removal. (d) The flare removal effect of the method Flare7K++[5] in the field of flare removal. (e) The flare removal effect of our proposed method. The red box delineates an enlarged area within the image, with arrows indicating the locations of the defects.

Contributions

- Flare Location Prior Guidance: we considered the critical impact of differentiating between flareaffected and nonflare-affected regions on image reconstruction performance, and subsequently propose Location Prior Guidance (LPG). This method integrates learned flare location information into the network through Location Prior Injection (LPI), guiding the model to effectively focus on flare regions within the image and significantly enhancing flare removal performance.
- Frequency and Spatial Domain Interaction Learning: To integrate the flare location information learned by LPG, we introduce the LPFSformer. The designed FCB and STB modules enable the LPFSformer to effectively perceive and distinguish flare features within images, thereby allowing targeted processing of flare-affected regions, which is crucial for flare removal.
- **SOTA Performance**: Extensive benchmark experiments demonstrate that our method outperforms existing stateof-the-art methods in terms of performance and shows excellent generalization ability in real-world scenarios.

Task-specific priors

Dai et al. introduced a novel optical center symmetric prior, specifically designed for reflective flare. However, it relies on the assumption that most smartphone cameras satisfy the optical center symmetry prior, a condition that does not always apply to certain professional cameras.

In contrast, our LPG is specifically designed to address scattered flare. It locates scattered flare by capturing flare features within the image, enabling effective localization without the constraints of the optical center symmetry prior. As a result, the LPG is more flexible and robust in real-world scenarios.

[1] Dai, Y., Luo, Y., Zhou, S., Li, C., Loy, C.C.: Nighttime smartphone reflective flare removal using optical center symmetry prior. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 20783–20791 (2023)

Overall pipeline

Fig. 2. The overall architecture of the proposed Transformer network for flare removal in night-time images (LPFSformer). It primarily includes: (1) Location Prior Guidance (LPG), (2) Location Prior Injection Module (LPI), (3) Coupled Module for Joint Learning in Frequency and Spatial Domains (FSIM), which consists of Frequency Convolution Block (FCB) and Sparse Transformer Block (STB), and (4) Global Hybrid Feature Compensator (GHFC).

The Location Prior Guidance (LPG)

We designed a ResBlock combination for flare feature extraction. Additionally, we introduced recursive expansion in the ResBlock stages, enabling the progressive learning of flare information while reducing network parameters. The LPG network consists of four components: (1) a convolutional layer f_{in} , (2) a convolutional Long Short-Term Memory (LSTM) layer as a recurrent layer $f_{recurrent}$, (3) multiple residual blocks f_{res} , and (4) a convolutional block f_{out} .

$$\overline{\mathbf{F}}_{ks} = f_{in}(I, \overline{\mathbf{F}}_{k-1}), \quad k = 1, ..., N,$$

$$\overline{\mathbf{S}}_{k} = f_{recurrent}(\overline{\mathbf{S}}_{k-1}, \overline{\mathbf{F}}_{ks}),$$

$$\overline{\mathbf{F}}_{k} = f_{out}(f_{res}(\overline{\mathbf{S}}_{k})),$$

Frequency and Spatial Domain Interaction Learning

Fig. 2. The overall architecture of the proposed Transformer network for flare removal in night-time images (LPFSformer). It primarily includes: (1) Location Prior Guidance (LPG), (2) Location Prior Injection Module (LPI), (3) Coupled Module for Joint Learning in Frequency and Spatial Domains (FSIM), which consists of Frequency Convolution Block (FCB) and Sparse Transformer Block (STB), and (4) Global Hybrid Feature Compensator (GHFC).

The Location Prior Injection (LPI)

When the flare color is similar to the background tone, directly integrating LPG priors often results in suboptimal removal of flare artifacts. This is because, the contrast between flare-affected and non-flare-affected regions is insufficiently pronounced. Inspired by this observation, we specifically designed LPI. LPI further updates the prior knowledge in a residual manner with attention weights then generated based on the updated prior knowledge.

Frequency and Spatial Domain Interaction Learning

Fig. 2. The overall architecture of the proposed Transformer network for flare removal in night-time images (LPFSformer). It primarily includes: (1) Location Prior Guidance (LPG), (2) Location Prior Injection Module (LPI), (3) Coupled Module for Joint Learning in Frequency and Spatial Domains (FSIM), which consists of Frequency Convolution Block (FCB) and Sparse Transformer Block (STB), and (4) Global Hybrid Feature Compensator (GHFC).

The Frequency-Space Interaction Module (FSIM)

Frequency Convolution Block (FCB):

The introduction of the FCB can effectively enhance the frequency representation of weak flare-affected regions in the image, thereby improving the network's locality in the frequency domain.

Sparse Transformer Block (STB):

Due to the standard Transformer's use of all tokens to globally compute self-attention, it may involve noisy interactions between unrelated features, which is not ideal for nighttime flare removal tasks. The STB can focus on the most relevant non-local information at each scale, enabling more accurate representations.

Training details

In the first phase, we train the proposed the LPG by cropping the input images to 384×384 . The location priors learned by LPG are compared with grayscale images of pure flare provided by the Flare7K++ synthetic pipeline, and optimization is performed using the L₁ loss function. After training, the obtained prior is used as the image preprocessing module for the second-phase flare removal model.

In the second phase, we train the flare removal model, LPFSformer, with images cropped to 384 \times 384 \times 3, performing 600K iterations on the 24K Flickr dataset. We combine reconstruction loss L₁ and perceptual loss L_{per} for joint supervision during training. The final loss function is expressed as:

$$\mathcal{L} = \omega_1 * L_1 + \omega_2 * L_{per}.$$

setting the weights ω_i of both the reconstruction loss L_1 and the perceptual loss L_{per} to 0.5.

Experiments

TABLE I QUANTITATIVE RESULTS ON REAL-WORLD NIGHTTIME FLARE IMAGES. "*" DENOTES MODELS WITH REDUCED PARAMETERS DUE TO THE LIMITED GPUMEMORY. THE BEST RESULT IS HIGHLIGHTED IN RED AND THE SECOND BEST RESULT IS HIGHLIGHTED IN BLUE.

Dataset		Flare7K: Real_test							
Metrics		PSNR ↑	SSIM ↑	LPIPS↓	G-PSNR↑	S-PSNR↑	Params (M)	MACs (G)	
Input		22.561	0.857	0.0777	19.556	13.105	-	-	
Previous Data Synthesis Pipelines	Sharma [71]	20.492	0.826	0.1115	17.790	12.648	22.365	285.12	
	Wu [29]	24.613	0.871	0.0598	21.772	16.728	34.526	261.901	
	Flare7K [1]	26.978	0.890	0.0466	23.507	21.563	20.429	159.643	
Flare7K++ Pipeline[5]	U-net [16]	27.189	0.894	0.0452	23.527	22.647	34.527	261.953	
	HINet [17]	27.548	0.892	0.0464	24.081	22.907	88.674	685.127	
	MPRNet* [18]	27.036	0.893	0.0481	23.490	22.267	3.642	567.187	
	Restormer* [19]	27.597	0.897	0.0447	23.828	22.452	2.981	57.975	
	Uformer [20]	27.633	0.894	0.0428	23.949	22.603	20.429	159.643	
	InternImage [72]	27.432	0.892	0.0488	23.623	22.420	59.015	944.246	
	GRL [73]	27.642	0.895	0.0475	23.853	22.523	19.775	1108.47	
	Kotp and Torki [33]	27.662	0.897	0.0422	23.987	22.847	129.306	271.419	
	LPFSformer(Ours)	28.238	0.905	0.0422	24.793	23.876	13.733	525.442	

Experiments

Fig. 3. Visual Quality Comparison on the Flare7K++ Real Dataset. We selected the high-performing Uformer[20] as the baseline network for both Flare7K[1] and Flare7K++[5] datasets. Additionally, we introduced InternImage[72], GRL[73] and Kotp and Torki[33], trained using the Flare7K++ pipeline, for a comprehensive comparison. The colored box delineates the enlarged area corresponding to the region within the image.

Experiments

Ablation Study

TABLE II PERFORMANCE ANALYSIS OF ABLATION EXPERIMENTS FOR LPG AND THE EFFECTIVE FLARE REMOVAL MODULES. THE BEST RESULT IS HIGHLIGHTED.

Model	PSNR ↑	SSIM↑	LPIPS↓	G-PSNR↑	S-PSNR↑
W/o LPG	28.131	0.900	0.0433	24.492	23.492
W/o LPI	28.183	0.904	0.0423	24.744	23.837
W/o FCB	27.950	0.903	0.0423	24.315	23.541
W/o GHFC	28.103	0.903	0.0424	24.512	23.316
LPFSformer	28.238	0.905	0.0422	24.793	23.876

Fig. 6. Visual results of ablation for LPG. The LPG localization results presented in grayscale.