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Introduction

Industrial Anomaly Detection Requirements:
* Computational Efficiency

e  Economic Cost

Contribution:

*  We substantially improve the state of the art for both the detection and the
localization of anomalies on industrial benchmarks, at a latency of 2ms
and a throughput of more than 600 images per second.

*  We propose an efficient network architecture to speed up feature
extraction by an order of magnitude.

*  We introduce a training loss that significantly improves the anomaly
detection performance of a student-teacher model without affecting its

inference runtime.

* We achieve an efficient autoencoder-based detection of logical anomalies.
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Figure 9: Anomaly detection results for (a) normal and (b)
defected samples, top to bottom: input image, reconstructed
image using AE, and anomaly map; left to right, sets #1 to
#6 of zipper cursor dataset.



Patch Description Network

four convolutional layers

a feature vector generated by the PDN only
depends on the pixels 1n its respective 33x33 patch

obtain the features for an image of size 256x256 in
less than 800 us on an NVIDIA RTX A6000 GPU

use the same pretrained features as PatchCore from
a WideResNet-101.

train the PDN on images from ImageNet by
minimizing the MSE between its output and the
features extracted from the pretrained network

PDN ensures that an anomaly in one part of the
image cannot trigger anomalous feature vectors in
other distant parts.
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Figure 2. Patch description network (PDN) architecture of
EfficientAD-S. Applying it to an image in a fully convolutional
manner yields all features in a single forward pass.
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Figure 3. Upper row: absolute gradient of a single feature vec-
tor, located in the center of the output, with respect to each input
pixel, averaged across input and output channels. Lower row: Av-
erage feature map of the first output channel across 1000 randomly
chosen images from ImageNet [55]. The mean of these images is
shown on the left. The feature maps of the DenseNet [25] and the
WideResNet exhibit strong artifacts.



Lightweight Student-Teacher

* Teacher : distilled PDN
e Student : PDN

* We observe that in the standard S—T framework, increasing the number of training images can improve the
student’s ability to imitate the teacher on anomalies. This worsens the anomaly detection performance. At the same
time, deliberately decreasing the number of training images can suppress important information about normal
images. Our goal is to show the student enough data so that it can mimic the teacher sufficiently on normal images

while avoiding generalization to anomalous images.
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sample a random image P from the pretraining dataset

During inference, the 2D anomaly score map
* is given by = 1
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Figure 4. Randomly picked loss masks generated by the hard fea-
ture loss during training. The brightness of a mask pixel indicates
how many of the dimensions of the respective feature vector were
selected for backpropagation. The student network already mimics
the teacher well on the background and thus focuses on learning
the features of differently rotated screws.



Logical Anomaly Detection
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Figure 5. EfficientAD applied to two test images from MVTec LOCO. Normal input images contain a horizontal cable connecting the two
splicing connectors at an arbitrary height. The anomaly on the left is a foreign object in the form of a small metal washer at the end of the
cable. It is visible in the local anomaly map because the outputs of the student and the teacher differ. The logical anomaly on the right is the
presence of a second cable. The autoencoder fails to reconstruct the two cables on the right in the feature space of the teacher. The student
also predicts the output of the autoencoder in addition to that of the teacher. Because its receptive field is restricted to small patches of the
image, it is not influenced by the presence of the additional red cable. This causes the outputs of the autoencoder and the student to differ.
“Dift” refers to computing the element-wise squared difference between two collections of output feature maps and computing its average
across feature maps. To obtain pixel anomaly scores, the anomaly maps are resized to match the input image using bilinear interpolation.
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Experiments

Detect. Segment. Latency Throughput

Method o AUPRO  [ms]  [img/s)
GCAD 85.4 88.0 11 121
SimpleNet 87.9 74.4 12 194
Ly 88.4 89.7 75 16
FastFlow 90.0 86.5 17 120
DSR 90.8 78.6 17 104
PatchCore 91.1 80.9 32 76
PatchCoregy, 92.1 80.7 148 13
AST 92.4 T2 53 41
EfficientAD-S (f ?)‘.36) (f {2)35) uz{i.zm) (Tg)
96.0 93.3 4.5 269

EfficientAD-M  "0'00)  (£004) (£001)  (E1)

Table 1. Anomaly detection and anomaly localization performance
in comparison to the latency and throughput. Each AU-ROC and
AU-PRO percentage is an average of the mean AU-ROCs and
mean AU-PROs, respectively, on MVTec AD, VisA, and MV Tec
LOCO. For EfficientAD, we report the mean and standard devia-
tion of five runs.

LOCO LOCO
Logic. Struct.

GCAD 89.1 833 83.7 854 | 839 82.7
SimpleNet 982 716 879 879 | 715 837

Method MAD LOCO VisA Mean

S-T 932 774 946 884 || 665 883
FastFlow 968 792 939 94| TS 829
DSR 98.1 826 918 908 | 750 90.2

PatchCore 98.7 803 943 91.1 75.8 848
PatchCoreg,; 993 794 977 921 71.0  87.7
AST 989 834 949 924 | 79.7 87.1

EfficientAD-S 988 90.0 975 954 85.8 94.1
EfficientAD-M 99.1 90.7 98.1 96.0 || 86.8 94.7

Table 2. Mean anomaly detection AU-ROC percentages per
dataset collection (left) and on the logical and structural anomalies
of MVTec LOCO (right). For EfficientAD, we report the mean of
five runs. Performing method development solely on MVTec AD
(MAD) becomes prone to overfitting design choices to the few re-
maining misclassified test images.



Experiments

Input Ground Truth EfficientAD-S EfficientAD-M DSR FastFlow GCAD  PatchCoreg,: SimpleNet

AEEENENEEER

Input Ground Truth EfficientAD-S EfficientAD-M DSR FastFlow GCAD SimpleNet ST

101

/_
o

=
g
a8
a -
Q :
a P o

Figure 9. Anomaly maps on anomalous images from MVTec LOCO and MVTec AD. For MVTec LOCO, we show a logical anomaly
(upper row) and a structural anomaly (lower row) for each scenario. The receptive field of AST’s features is large enough to detect some
logical anomalies, while PatchCoreg,g and S-T struggle with logical anomalies.

Figure 10. Anomaly maps on anomalous images from MVTec AD. Almost all anomalies are detected by every method, but the separability
of pixel anomaly scores varies between methods. For example, PatchCorery,, detects the anomaly on the capsule in the first row but the
pixel anomaly scores are in a similar range as the false positive detections in the background of the screw image.



Experiments

Method Detect. Segment. Latency Throughput

AU-ROC AU-PRO [ms] [img / s]
GCAD 85.4 88.0 11 121
SimpleNet 87.9 74.4 12 194
S-T 88.4 89.7 75 16
FastFlow 90.0 86.5 17 120
DSR 90.8 78.6 17 104
PatchCore 91.1 80.9 32 76
PatchCoregy, 92.1 80.7 148 13
AST 924 T 53 41
; 954 92.5 2.2 014
EfficientAD-S "6y (£005) (£001)  (+2)
Efficient AD-M 96.0 93.3 4.5 269

(£0.09) (+0.04) (£0.01) (1)

Table 1. Anomaly detection and anomaly localization performance
in comparison to the latency and throughput. Each AU-ROC and
AU-PRO percentage is an average of the mean AU-ROCs and
mean AU-PROs, respectively, on MVTec AD, VisA, and MV Tec
LOCO. For EfficientAD, we report the mean and standard devia-

tion of five runs.

Detection ; Latency
Au-RoCc P g
PDN 93.2 22
< with map normalization 94.0 +0.8 2.2
< with hard feature loss 95.0 + 1.0 22
< with pretraining penalty 954 +04 2.2
EfficientAD-S 95.4 2.2
EfficientAD-M 96.0 +0.6 4.5

Table 4. Cumulative ablation study in which techniques are grad-
vally combined to form EfficientAD. Each AU-ROC percentage
is an average of the mean AU-ROCs on MVTec AD, VisA, and
MVTec LOCO.

Detection ; Latency

AUROC - higg
EfficientAD-S 954 2.2
Without map normalization 94.7 -0.7 2.2
Without hard feature loss 94.7 -0.7 22
Without pretraining penalty 95.0 -04 22

Table 5. Isolated ablation study in which techniques are separately
removed from EfficientAD-S.



Experiments
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Figure 6. Latency per GPU. The ranking of methods is the same
on each GPU, except for two cases in which DSR is slightly faster
than FastFlow.
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Figure 8. Anomaly detection performance vs. throughput on an NVIDIA RTX A6000 GPU. We report the image-level anomaly detection
performance on the left using the image-level AU-ROC. On the right, we report the anomaly localization performance using the pixel-level
AU-PRO segmentation metric up to a FPR of 30 %. Each AU-ROC and AU-PRO value is an average of the values on MVTec AD, VisA,
and MVTec LOCO. We measure the throughput using a batch size of 16.
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Figure 1. Anomaly detection performance vs. latency per image on
an NVIDIA RTX A6000 GPU. Each AU-ROC value is an average
of the image-level detection AU-ROC values on the MVTec AD
[7,9], VisA [74], and MVTec LOCO [8] dataset collections.
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