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Transformer
Output
Drawbacks of RNN and LSTM: Probabilities

» Prone to vanishing and exploding gradient problems, hindering learning

» More biased toward recent data instead of global context understanding

» Not able to take advantage of modern GPUs designed for parallel processing (1 )

Feed
Forward
. Y ) ; : r N | | (Add& Norm J«~
Main contributions of the Transformer paper: Multi-Head Attention \\ ———
. \ Feed Attention
&

» Encoder-decoder structure N Forward ) Nx
Self attention and cross attention K ' Add & Norm

> Multi-head attention ) ! % Vel
Each head could attend to different feature et | Jl h Attention Attention

. /

» Causal modeling I l l R — J L — J
Causal mask 1n the decoder prevents positions Linear JH{ Linear PH{ Linear |] Posflional 5 ! Positional
from attending to future positions | Fhooding Encoding

.. . Input Output

» Positional embedding v 2 = /’ Ermbedding Embedding
Adding perturbation to the sequence to 1 1
differentiate the order of tokens Inputs Outputs

(shifted right)

Attention is All You Need (June 2017 Google)
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I Background PHI‘NP_[:

Different Architecture for Different NLP Tasks

BERT — Masked Language Modeling (Encoder only) GPT — Causal Language Modeling (Decoder only)

Better understanding for global information. Suitable for almost
every NLP task like sentiment analysis, token classification etc.

Best choice for generative tasks.
Extrapolable context window size.

\
! 1
1 1
] ]
: | across I the | road I <EOS> I |
1 I ; ] :
. : Decoder-Only Architecture |
you has the highest probability | you,they, your.. 1 1
Jﬁ 1 [ Decoder Block :
Output [CLS] how are ‘ doing |today | [SEP] : { DeCOdEfr Elcek :
[T fT111 R ——
: [ Feed Forward Neural Network ] 1
1 ( Masked Self-Attention ] :
BERT masked language model ! T T : T : : I
1 |
T T T T T T T 1 [ Token and Positional Embedding ] :
|

I | !
|
Input [CLS] | how  are doing | | today  [SEP] : | e [oohioken [wamea [ .. | . [ . | . ] :
|

1 |
Pros: I Pros: ]
- I
I |
I |
] I
Cons: i Cons: :
Fixed context window size. | Limited understanding for global context. )
Not suitable for generative tasks. e S

High annotation cost.

BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding (October 2018)
GPT: Improving Language Understanding by Generative Pre-Training (June 2018)



I Background

Training Steps for LL.Ms

» Pretraining
Use causal loss to perform next-token prediction
training on large corpus of data

» Instruction tuning
Supervised training on instruction tuning dataset,’
to make LLM better follow users’ instructions /

L =— Z log Po(xes1 | Tea), !
:

» Alignment. LLM should generate contents |
that align with human’s preference (safety...) “s_
RLHF (PPO) AN

DPO N

Training language models to follow instructions with human feedback (Mar 2022)

/
/
/

/

/]
/
/

ParN.C
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Step1

Collect demonstration data,
and train a supervised policy.

A prompt is
sampled from our
prompt dataset.

Explain the moon
landing to a 6 year old

Z

Some people went
to the moon

Alabeler
demonstrates the
desired output
behavior.

y
This data is used &t
to fine-tune GPT-3 22
: : S
with supervised N7
learning. z
BEB

Step 2

Collect comparison data,
and train a reward model.

A prompt and
several model
outputs are
sampled.

Explain the moon
landing to a 6 year old

Explain gravity. Ex

nnnnnnnnn

A labeler ranks
the outputs from
best to worst.

o e
This data is used RM
to train our 2o
N
reward model. p2rd
0-0-0-0

Step 3

Optimize a policy against
the reward model using
reinforcement learning.

A new prompt

: »

is sampled from .

the dataset. about frogs

Y

The policy i
enerates 2o

g &

an output. \.\se{/

¥
Y

Once upon a time...

The reward model
RM

&

the output. N
Y

The reward is

used to update fi

the policy

using PPO.
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I Introduction PEII‘NP_E

Content

CLIP

4>[ Modal Encoder ]7 DINO
LLaVA (MLP)
—{ Plug and Play ]74[ Adapter ]7 BLIP2 (Qformer)

Modal Encoder + LLM
Multi-modal Perception Only

. . Shikra, LISA, NextChat
"[ L SO Spatial-VLM, Ferret

SEED, Emu
ﬂ[ VQ-VAE ] AnyGPT, VAR
Autoregressive
[ End to End ] Diﬁ:ﬁsion MAR
Modal Tokenizer + LLM
Perception and Generation

_’[ Frequency Domain? ]7 Waiting to be explored ...
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The Meta Question: Why Could Multi-modal Reasoning Exist?

A red sphere next to
a blue cone.

| Feex:

J

The representations across multiple modalities will converge
on a shared representation of Z, and scaling model size, as
well as data and task diversity, drives this convergence.

The Platonic Representation Hypothesis (May 2024)

llamas3-T00

o 0.7 mixtra

1] larma-3

= 065 llama-65h

% L$ﬁ| s,

— .60 1 gemma

v < ? . 'ma Fle]

L 055+ 'w"r'n"’ b ’Enllarr =13t

% gemma-2 @wn Hlarna-7h

g 9507 gepenllama-3b

O olmo-1b - Bloom-7.10

E e bloam-3b

s 040 blocm-17b

E .35 - bloom-1.1b

Ci hloom-560m

[_J 3':' T T T T T T 1
014 016 0.8 0.20 022 0.24 0.26
Alignment to VISION (DINOv2)
We can build MLLM using existing visual encoder
mmm) and LLM with suitable adapter to deal with modal

alignment.
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I Plug and Play

[—h [
Text = s =
(2] .| Image loput \ Image Output fa]
Image IAA— ] Pmﬁecﬂgn':, ) Projection y > >\
: Audio Input Audio Output
Audio Projection h Projection F“’I'
A
; - Video - -";".i-nzh_:n-l-nput_| ,a-";'f Video Output s N
Video '_)_'_"'| Projection A' . Projection
More modalities aes - s - =3 ove
| I I | I |
Multimodal Input LLM-centric  LLM-based Semantic Instruction-followmng ~ Multimodal Output
Encoding Alignment Understanding Alignment Generation

Connect an LLM with multimodal adaptors and different diffusion decoders, enabling it to perceive
inputs and generate outputs in arbitrary combinations of text, image, video, and audio

NExT-GPT: Any-to-Any Multimodal LLM (Sep 2023)



I Modal Encoder

CLIP

(1) Contrastive pre-training

Pepper the h
aussie pup >

Text ‘

Encoder
Y Y Y Y
— dE U | L L Tn
|
!
—i*| L LTy | Ty | IyTs LTy
|
Image ‘
» I 3Ty | 13Ty | 3T Ii'T
Encoder‘ 3 .31:32 3T3 3TN
—r Iy INT; | InT | InT3 InTn

(2) Create dataset classifier

ParN.C

from label text

Y

photo of o Text
a {object}.
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Encoder

(3) Use for zero-shot prediction

» Pretrained on 400 million image-text pairs just using contrastive loss
» Powerful zero-shot capability

» The most popular visual encoder for MMLM

Learning Transferable Visual Models From Natural Language Supervision (Feb 2021 OpenAl)

ol R I ‘ ILi'Ty | 1Ty

A 4 A 4 A 4 Y
Ty Al T3 Ty
115 LTy

Encoder ‘ |

Y

& photo of
a dog.
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I Modal Encoder PHI‘NP_[:

DINO

Motivation: The success of Transformers in NLP was the use of self-supervised pretraining (BERT, GPT)

loss:
-pelog p

sg

l softmax J | softmax |
|
centering
|

CIna
student gbs — | teacher ghe

Figure |: Self-attention from a Vision Transformer with 8 = 5 patches trained with no supervision. We look at the self-attention of

° e the [CLS] token on the heads of the last layer. This token is not attached 1o any label nor supervision. These maps show that the model

automatically learns class-specific features leading to unsupervised object segmentations.

From a given image, generate a set V' of different views. This set contains two global views, x‘lg and ng and several local
views of smaller resolution. All crops are passed through the student while only the global views are passed through the
teacher. Align the predictions of two networks on feature dimension K.

e | mmmmmmm e ——— \

" o RYEY Ny | I 1 N H

. o i P_s. - (i) _ E)XP(QG# (3’) /1-‘;) 1 1 - Pp:-ltch ’ T log Ppatc:h A-;' I

loss_vl = E;:_g ZE; H(R ) B "= S rnlon, @)® /) loss v2 T loss vl ,FLL _Ziin_ il i‘l:}__ig_f__ (_'M_)JI
ST g Image-level Patch-level

DINO: Emerging Properties in Self-Supervised Vision Transformers (May 2021 Meta)
DINOV2: Learning Robust Visual Features without Supervision (Feb 2024 Meta)
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I Modal Encoder PEII‘NP_E
CLIP v.s. DINO How to Choose Between These Two?

Motivation: CLIP-blind pairs — images that CLIP perceives as similar despite their clear visual differences, is
the main source of incorrect answers and hallucinated explanations.

Step 2 Step 3

Step 1
Spotting the difference between two images. Benchmarking multimodal LLMs.

Finding CLIP-blind $25 pairs.

Evaluate multimodal LLMs using a CLIP-blind

For a CLIP-blind pair, a human annotator attempts to spot
image pair and its associated question.

Discover image pairs that are proximate in CLIP feature
the visual differences and formulates guestions.

space but distant in DINOv2 feature space.

Where is the yellow animal's head lying in this image?
{a) Floor (b) Carpet

"The dog’s head in the left image is resting l 3 \
on the carpet, while the dog's head in the [ {b) Carpet " | (b) Carpet 3
= L

A

CLIP Space
% Simcl_rp = 0.95

right image is lying on the floor.”
. O\ \
\ Formulating questions and lh s
J‘/ ‘.SEmDiNU = 0.58 options for both images. X (noscore for this pair]
: \
Where is the yellow animal’s head lying in this image? The model receives a score only when both
DINOv2 Space {a) Floor (b) Carpet predictions for the CLIP-blind pair are correct.

DINO is more suitable for fine-grained level perception, object detection, semantic segmentation
Merging visual representations from CLIP and DINO t leads to improved performance in visual grounding tasks.

Eyes Wide Shut? Exploring the Visual Shortcomings of Multimodal LLMs (Apr 2024)



Adapter
LLaVA (MLP)
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Motivation: Use a two-layer MLP to project visual feature into language space.

Language Response Xa . ‘ .
Language Model f¢ =
OO0 A
Hv ?Hq

XV Image Xq Language Instruction

Projection W
Zy,

Vision Encoder

Figure 1: LLaVA network architecture.

Context type 1: Captions

A group of people standing outside of a black vehicle with varous luggage.
Luggage surrounds a vehicle in an underground parking area

People try to fit all of their luggage in an SUY.

The sport utility vehicle is parked in the public garage, being packed for a trip
Some people with luggage near a van that is transporting it.

Context type 2: Boxes

person: [0.681, (0,242, 0.774, 0.694]. backpack: [0.384, 0.696, 0.485, 0.914], suitcase: ...<omitted>

Response type 1: conversation

Question: What type of vehicle is featured in the image?

Answer: The image features a black sport utility vehicle (SUV) ..<omitted>

Response type 2: detailed description

The image 1$ an underground parking arca with a black sport utility vehicle (SUV) parked. There
are three people in the scene, with one person standing closer to the left side of the vehicle. another
person in the middle. and the third person on the right side. They are all working together to pack
their luggage into the SUV for a trip. .. .<omitted>

Response type 3: complex reasoning

Question: What challenges do these people face?

Answer: In the image. a group of people is standing outside a black SUV in a parking area,
surrounded by various pieces of luggage. including suitcases and backpacks. They are facing the
challenge of fitting all their luggage into the black SUV. There are multiple suitcases and backpacks
to be packed, which suggests that the group has a significant amount of belongings ...<omitted>

Stage 1: Pre-training for Feature Alignment. Optimize MLP only on short VQA pairs.

Stage 2: Fine-tuning End-to-End. Use 150K GPT-generated multimodal instruction-following data, plus
around 515K VQA data from academic-oriented tasks, to teach the model to follow multimodal instructions.

Visual Instruction Tuning (Dec 2023)
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I Adapter PHI‘NP_[:
BLIP2 (QFormer)

Motivation: Optimize learnable queries (Query2Label, Perceiver, finetuning CLIP) to merge and down-sample visual feature

Q: query token positions; T: text token positions.

= onver Image-Grounded B masked [J] unmasked
Matching Image-Text Text Generation
; Q T T Q T
Input Image Contrastive

Learning Féad Forward \ DD DE] DD .- QDD “.

p—— for every . " DD L0 DD .- L] EE

s e o T | svtontion Masking L0000 .0dOm  EEO0

g ,+— Dbidirectional — g L — E[I::‘ DD DD DD -. DD

J x N gl |, mutiimodal causal el | x N Bi-directional Multi-modal Causal Uni-modal
Self-Attention Mask  Self-Attention Mask Self-Attention Mask

Learned ? Image-Text Image-Grounded Image-Text
Queries (B 0-00 put Toxk [a e woerng sung!asses} Matching l { Text Generation Contrastive Learning

Image-Text Contrastive Learning (ITC) learns to align image representation and text representation by contrasting the
image-text similarity of a positive pair against those of negative pairs in a batch.

Image-grounded Text Generation (ITG) loss trains the Q-Former to generate texts, given input images as the condition.

Image-Text Matching (ITM) aims to learn fine-grained alignment between image and text representation. It is a binary
classification task where the model is asked to predict whether an image-text pair is positive (matched) or negative (unmatched).
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I Instruction Tuning PHFNP_[:
Shikra

Motivation: Endow LLM with fine-grained perception capability like object detection, semantic segmentation

= How is the person in the picture feeling[0.610.0.251,0.825,
(.829]? How did you find out?

The person in the picture [0.610,0.251,0.825,0.829] is feeling

surprised and happy. We can infer this from the fact that she 1s
covering her face with her hands [0.612.,0.352.0.690.,0.444] while

looking at the man [0.216.,0.223.0.558.0.832] offering her a bunch
of red roses [0.412,0.390,0.588,0.756].

p=4 What 1s unusual about this image? give coordinates
[xmin,ymin,xmax,ymax] for the items you reference.

The unusual aspect of this image is the man [(.392,0.254,0.652,
(0.530] standing on top of the ironing board [0.338.0.392.0.668,0.7
56] in the back of the yellow SUV [0.452,0.384,0.998,0.738]. The
scene 1s unusual and unexpected, as one would typically not expect
to see someone ironing clothes while standing on top of the car.

Add more object detection datasets in pretraining stage
Use GPT4 to generate QA pairs with 2d bounding box to perform instruction tuning

Shikra: Unleashing Multimodal LLM’s Referential Dialogue Magic (Jul 2023)
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I Instruction Tuning PHFNP_[:

Ferret

Motivation: Endow LLM with fine-grained perception capability like object detection, semantic segmentation

Hybrid Region Representation : Ferret Model _
Region Name + [Coordinates] + <feature> [ fisaicat e Ro0. b0 )
[ + .,. | g 3L } ooo | \
- - [~ [
“ : [ Large Language Model l
Free-f Shi |
Point Box [Skeéﬁleﬁcgﬁle, p:rE:unsl :
______________________ g
5’.«?‘“ g X | Encod o
. Fusion | [ mage Encoder ] -
e L = W.'Nliﬂ.hbnr — | ] Spatial-Aware
;-:’:‘:.-’Ql""' o -... . e Fl I_ -.-.IEMI'Q: : - i | ! \fisual Sampler
=-:§ ; P } v / |
v aageor KT ~ Embedding |
i " Flatten & I e e
Block1 — Block2 — projection | What's in region|[700, 600, 500, 900] <SPES ?
L]
il Spatial-Aware Visual Sampler ™| Image Input e

Spatial-aware visual sampler. The shape of the referred regions can be quite varied, not limited to just points or
rectangle boxes. Given extracted image feature map Z and the binary region mask M, we first randomly sample N
positive points inside M. For each point, its feature is obtained by bilinear interpolation.

2D coordinates of point x

— C(x1)]); Z(z:); C(=i)]) ,

hir = o([0([Z(zir) — Z(z:);|C(zik
Ferret: Refer And Ground Anything Anywhere at Any Granularity (Oct 2023)

p—
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I Instruction Tuning PHI"NP_E
NeXT-Chat
Motivation: Endow LLM with fine-grained perception capability like object detection, semantic segmentation

Answer: It is <trigger>
CILL

Large Multimodal Model

L] %
In I . where is the bear to the left of region [} ?

e o
L} 1}
B =i TR

o

bounding box

mask

Location

Introduce a special token, denoted as <trigger>, which serves to trigger the localization (detection/segmentation)
Incorporate box encoder and decoder to extract fine-grained localization information
Connect with SAM to perform semantic segmentation

NExT-Chat: An LMM for Chat, Detection and Segmentation (Dec 2023)
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I End to End ParN.C
One Unified MLLM Architecture

i . i - i Sampling
[ Text ]M{ Index in vocab LBkl Token vectors ]Aum LogTessTve =[ P(xi41]%0:;) over vocab ]m{ Next token ]

generation

How about using light-weight

modal tokenizer to discrete

feature in other modalities as well?

» Throw away modal adapter.
LLM will process all modal
data in one feature space.

» Generate image, text, audio...
all in auto-regressive manner

Tone perception, real-time
conversation, change any voice
type you like, image generation...

May 13 2024 GPT-40 Release
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I End to End ParN.C

How to Tokenize Image? Pixel by Pixel? Slow and high cost!

Motivation: Vector Quantized-Variational-AutoEncoder (VQ-VAE), a simple yet powerful generative model that learns
visual discrete representations, differs from VAEs in two key ways: the encoder network outputs discrete feature

Embedding
Space

z(x) & VL
—»

s —

Z X
2 I f}r‘. E( }
[ | 4
! .e.ﬂ _."j
> s | i & CNN
%2
B ||
200 2,0~ q(z)
v
. Y
Encoder Decoder

Define a latent embedding space ¢ € R *¥ where K is the size of the discrete latent space (i.c., a K-way categorical),
and D is the dimensionality of each latent embedding vector ¢;. Take an image input x to calculate z. () from encoder,
and then find the nearest ¢; in codebook

e e e e N dient p ‘ me
ol 8NN |7 — decoder(z+ sglzq — 2])|I3 + Bllsalz] — 213+l — salzd]lI3

Neural Discrete Representation Learning (May 2018) Can we use VQ-VAE as image tokenizer? Yes and No
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I End to End PH[‘NE[:
What Stands in The Way of A Unified MLLM Architecture?

Causal modeling for image
What’s causality?
The system will only laugh if you tickle it...

Text/audio generation: the future token is dependent on past tokens. That’s why we can generate text/audio
sequence in a auto-regressive manner. (1D causal system)

All NLP tasks [END] are  generation tasks

All [START] NLP tasks are  generation tasks

Ip2

Image generation: A pixel in image space has relation with other 8 pixels in its neighborhood. So 1D causal modeling is
a wrong representation for image. (2D semi-causal system)

How to define causality for image?
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I End to End ParN.C
Causal Modeling for Image

Input Reconstruction

SDD d £ i
i Generation Embeddings SEER Do Takenlze

DU [~ & | | SUS——————
& h Reverse O-Former
&
E:
Z HEE-EE EE-EE.
E i Learned Queries Tfausa': Codes
al : Ret r
= Codebook ;
S e
I....*{ """ Contrastive ---> Text EmEeddiﬂgs
T $ Causal Embeddings
_ ™
Causal OQ-Former
|
H a1 1
1, (e T P
=1 Learned Queries T
2]
SEED Tokenize A dog sits on the grass”

Figure 2: Overview of our SEED tokenizer, which produces discrete visual codes with causal
dependency and high-level semantics.

Training Stage I: Causal Q-Former. Use causal mask in Q-Former to optimize learnable queries by contrastive loss (final token only).
Training Stage II: Visual Quantization and De-tokenization. Train a VQ codebook to discretize the causal embeddings and then employ a
Reverse Q-Former to reconstruct the textual features of a frozen stable diffusion model from discrete codes.

Planting a SEED of Vision in Large Language Model (Aug 2023)  Encode image feature into 1D sequence, losing 2D spatial information!
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I End to End PEII‘NP_E
Causal Modeling for Image

Motivation: autoregressive image generation can be viewed as coarse-to-fine “next-scale prediction” or “next-resolution
prediction”, diverging from the standard raster-scan “next-token prediction”.

Stage 1: Training multi-scale VQVAE on images Stage 2: Training VAR transformer on tokens

([5] means a starl loken with condition information)

( to provide the ground truth for training Stage 2)

T 5r2 —  Cross-Entropy
7l [1](2)(3 89—
Block-wise causal mask
VAR Transformer (causal) LTty
N B H
=" ) e P  aoiama, EamErEmEm
iepl1)(2]|3]|laliiesla] [8]|9

word embedding and up-interpolation

n Py

VAE encoding  Multi-scale quantization & Embedding Decoding L=124+22+43=14

Figure 4: VAR involves two separated training stages. Stage 1: a multi-scale VQ autoencoder encodes
an image into K token maps R = (r1,72,...,7x) and is trained by a compound loss (5). For details on
“Multi-scale quantization” and “Embedding”, check Algorithm | and 2. Stage 2: a VAR transformer is trained
via next-scale prediction (6): it takes ([s],r1,72,...,7x—1) as input to predict (ry,r2,73,...,7Kx). The
attention mask is used in training to ensure each rj, can only attend to r<. Standard cross-entropy loss is used.

The autoregressive unit should be an entire token map, rather than a single token. Quantize a feature map f € R"***¢ into K multi-scale
token maps (r1,75,...,7k), each at a increasingly higher resolution h;, X wj, culminating in 1, matches the original feature map’s resolution

h X w. K
p(rl:TQJ'“aT‘K) — Hp(rk | T11T21---3kal)s
k=1

Visual Autoregressive Modeling: Scalable Image Generation via Next-Scale Prediction (Jun 2024)
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I End to End ParN.C

Does Image Modeling Have to Be Discrete?

Motivation: model the per-token probability distribution using a diffusion procedure, which allows us to apply
autoregressive models in a continuous-valued space using Diffusion Loss.

= (a) AR, raster order Figure 3: Generalized Autoregressive Models.
e — (a) A standard, raster-order autoregressive model
T predicts one next token based on the previous to-

kens. (b) A random-order autoregressive model

condition z l :b}AR random order predicts the next token given a random order. It
behaves like randomly masking out tokens and

nolsy 1, —> ' MLP | . & PITT then predicting one. (c) A Masked Autoregressive

= (MAR) model predicts multiple tokens simultane-

diffusion loss for p(x}=) (c) Masked A_F_R_ ) ously given a random order, which is conceptually

R —_ analogous to masked generative models [4, 29]. In

L(z,z) =E,. [”E — colzylt, 3)”2} [ T all cases, the ‘pred.iction ofon_e step can be done by
' causal or bidirectional attention (Figure 2).

known/pradicted to predict at this step urknown

Instead of using diffusion models for representing the joint distribution of all pixels or all tokens, in our case, the diffusion model
is for representing the distribution for each token. Similar to MAE, predict multiple tokens based on previous tokens.

L g B O G H;)X;‘ Kb P,

XF = {xf 2. 27} is a set of tokens to be predicted at the k-th step
MAE + Diffusion
Use diffusion to replace MAE decoder

Autoregressive Image Generation without Vector Quantization (Jun 2024)
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I End to End ParN.C

How About Frequency Domain?

| Hard to ensure the independence among vectors (bases) in codebook
//"\‘\\_ ) Not an efficient information encoding technique, leading to detail loss in image
r o 2 “"‘\--\‘ Still unclear how to define causality in image space
@ a(z}x) -
W

Use FFT to transform images into frequency domain.

) » Sinusoidal bases are linear independent to each other

o » In 2D image space, there is a causal relationship
between low frequency basis (blur) and high
frequency (clear) basis.

fo=eifitefotesfs+-+eufy

8000
@ 8 () (J Codebook only consists

; . BB B0 of coefficients
F(k,1) = VAt § I J

T




I Alternative

How Long Will Transformer Dominate?

Output
Probabilities

Add & Norm
Feed
Forward
e | A | Add & Norm IT:
(—Ladd&Nom ) Multi-Head
Feed Attention
Forward ] ) Nx
—
Nx Add & Norm
f—>| Add & Norm | Maskod
Multi-Head Multi-Head
Attention Attention
1 L
— J \_ 0
Positional & @ Positional
Encoding Encoding
Input Output
Embedding Embedding
Inputs Outputs

(shifted right)
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» Simple but efficient. The basic operation is matrix multiplication, making parallel
computing possible. (ZeRO, Megatron...)

» Suitable for almost any modal data.

0(L?) inference cost. Struggle to achieve long-context window understanding. (K V-
Cache, GQA, RoPE, NTK-aware interpolation ... )

Any challenger?

Selective State Space Model
with Hardware-aware State Expansion

i i ==
__U L] 3 H .
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Mamba: Linear-Time Sequence Modeling with Selective State Spaces (May 2024)
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Next-Token Prediction: The Path to AGI?

In computer vision, there has been a similar pattern. Early methods conceived of vision as searching for
edges, or generalized cylinders, or in terms of SIFT features. But today all this is discarded. Modern deep-
learning neural networks use only the notions of convolution and certain kinds of invariances, and perform
much better.

» Al researchers have often tried to build knowledge into their agents

> this always helps in the short term, and is personally satisfying to the researcher,

> in the long run it plateaus and even inhibits further progress,

» breakthrough progress eventually arrives by an opposing approach based on scaling
computation by search and learning.

We should build in only the meta-methods that can find and capture this arbitrary complexity.
Essential to these methods is that they can find good approximations, but the search for them should
be by our methods, not by us. We want Al agents that can discover like we can, not which contain
what we have discovered.



Thanks



