

Mitigating Backdoor Attacks in Federated Learning

Chen Wu

Computer Science and Engineering Pennsylvania State University cvw5218@psu.edu

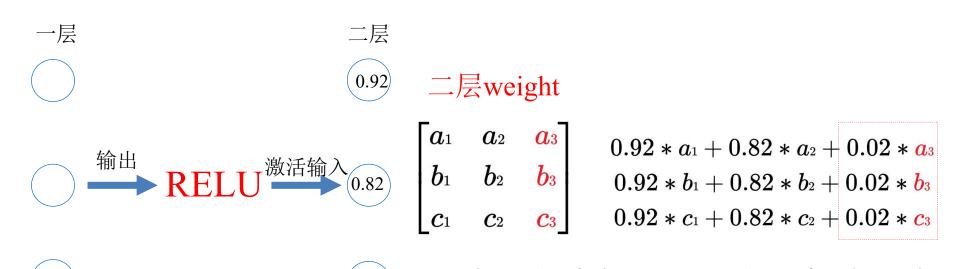
Sencun Zhu

Computer Science and Engineering Pennsylvania State University sxz16@psu.edu

Xian Yang

Computer Science
North Carolina State University
xyang45@ncsu.edu

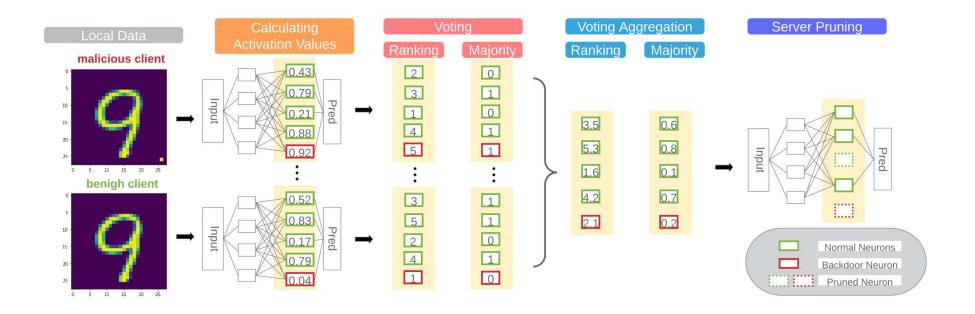
Prasenjit Mitra


Information Sciences and Technology Pennsylvania State University pum10@psu.edu

arixiv 2021

模型剪枝(Model Pruning)

深度学习网络模型从卷积层到全连接层存在着大量冗余的参数,大量神经元激活值趋近于0,将这些神经元去除后可以表现出同样的模型表达能力,这种情况被称为过参数化,而对应的技术则被称为模型剪枝。


2) 0.02 神经元为冗余神经元,低激活休眠状态,去除该神经元,对模型性能影响不大

剪枝:将与该神经元关联的权重列设置为0 (列剪枝)

BadNets: Identifying Vulnerabilities in the Machine Learning Model Supply Chain

BadNets发现,带trigger(触发器)样本输入后门模型,会让模型产生一些区别于良性输入的差异。输入触发器样本,后门模型会激活一些所谓"后门神经元",而这些神经元在面对良性输入时,常处于休眠状态(低激活)。

后门防御评估指标

1 .Attack Success Rate(ASR)

攻击成功率,输入触发器样本,模型识别为target class(攻击类别)成功率,ASR越大,模型后门性能越强

2. Main Task Accuracy(ACC)

主任务(良性任务),在非触发样本上的性能,ACC值越大,模型的预测性能越强。

攻击者目标: ASR和ACC同时最大。

防御者目标: ASR最小和ACC最大

剪枝后门防御原理

去除休眠冗余神经元, 防止在后门攻击时这些休眠神经元被激活。

剪枝标准

休眠神经元是人为认定, 过度剪枝会影响模型性能。一般使用辅助验证集, 边剪枝边评估当前模型在良性样本上的准确度。当模型在辅助数据集上的准确度下降到阈值停止剪枝。

Mitigating Backdoor Attacks in Federated Learning

假设1. 拥有辅助数据集

服务器使用数据集去寻找休眠神经元。(优点:自身评估结果,可信。缺点:拥有验证数据集)

假设2. 无辅助数据集

借助客户端本地验证集去评估,客户端上传评估结果。(优点:服务器无需拥有验证数据集。缺点:无法排除后门客户端告诉的虚假序列)

Experiments

EXPERIMENTS ON FASHION-MNIST DATASET

Targe	et	Training	Phase	Pruning N	Veurons	Adjusting	Extreme Weights	Defense v	with Fine-tuning
vic	atk	test acc	atk acc	test acc	st acc atk acc		atk acc	test acc	atk acc
9	0	88.8	99.8	83.2	2.8	82.9	2.1	86.3	9.0
9	1	88.7	99.4	82.6	6.5	82.1	0	87.0	0
9	2	87.8	99.8	82.2	2.7	82.1	3.1	85.6	12.6
9	3	87.5	99.6	84.4	0.3	84.4	0	86.2	0.4
9	4	87.8	99.7	81.0	2.9	80.6	0	85.8	2.3
9	5	88.6	99.7	81.2	11.9	80.6	3.6	86.1	10.4
9	6	86.3	99.8	82.8	93.6	82.0	0.2	86.0	3.1
9	7	88.5	99.7	82.9	4.3	83.1	4.6	87.0	17.1
9	8	88.8	99.9	84.7	87.7	85.0	3.2	87.2	2.9

原攻去労共別

ACC ASR 防御前 只剪枝

剪枝+极端权值调整

剪枝+参数微调

讨论

区别于神经元剪枝将休眠权重设置为0,将休眠神经元关联的权重列,在全局中训练得到的增量进行方向翻转。

高激活值 依赖 关联权重 传递到 输出层 形成攻击效果。而这些关联权重在全局获得的 Updates起到关键作用, Flip Updates。

IID

Dataset		MNIST		FMI	NIST	EMI	NIST	CIFAR-10 _(DBA)		
Base	Target	ASR(%)	ACC(%)	ASR(%)	ACC(%)	ASR(%)	ACC(%)	ASR(%)	ACC(%)	
	5	0.949	0.992	0.991	0.901	1	0.854	0.974	0.837	
	3	0	0.992	0	0.900	0	0.850	0.019	0.821	
0	6	0.965	0.991	0.992	0.905	0.999	0.851	0.960	0.836	
		0	0.990	0.036	0.880	0	0.847	0.022	0.820	
	7	1	0.989	0.989	0.904	0.999	0.856	0.972	0.820	
		0	0.989	0	0.894	0	0.856	0.007	0.790	
	5	0.999	0.989	0.994	0.903	0.999	0.857	0.911	0.827	
		0	0.989	0.003	0.902	0	0.854	0.021	0.805	
1	6	0.999	0.988	0.996	0.903	0.999	0.862	0.912	0.807	
1	O	0	0.986	0.041	0.901	0	0.854	0.027	0.783	
	7	1	0.989	0.996	0.903	0.996	0.846	0.929	0.840	
	1	0	0.989	0	0.886	0.001	0.846	0.048	0.798	

non-IID

Dirichlet a = 0.5

Dataset		MN	IST	FMI	NIST	EMI	NIST	CIFAR-10 _(CBA)		
Base	Target	ASR(%)	ACC(%)	ASR(%)	ACC(%)	ASR(%)	ACC(%)	ASR(%)	ACC(%)	
	5	1	0.988	0.989	0.897	0.999	0.835	0.969	0.762	
	3	0	0.988	0	0.880	0	0.832	0.002	0.754	
0	6	1	0.989	0.993	0.892	0.999	0.848	0.981	0.781	
U		0	0.989	0.006	0.880	0	0.847	0.002	0.772	
	7	1	0.989	0.983	0.883	0.997	0.831	0.961	0.772	
		0	0.988	0.001	0.869	0	0.827	0.016	0.761	
1	5	0.999	0.989	0.977	0.886	0.999	0.838	0.935	0.765	
	3	0	0.989	0	0.862	0	0.837	0.008	0.730	
1	6	0.999	0.987	0.993	0.886	0.997	0.837	0.933	0.755	
1	O	0	0.987	0.002	0.877	0	0.836	0.007	0.739	
	7	1	0.988	0.988	0.894	0.994	0.811	0.974	0.774	
	/	0	0.987	0	0.884	0	0.810	0	0.758	

Experiments

Dataset	FMNIST										
Backdoor Clients(%)	0		30		40		50		60		
Clients	ASR	ACC	ASR	ACC	ASR	ACC	ASR	ACC	ASR	ACC	
10	0.007	0.913	0.945	0.902	0.975	0.903	0.988	0.901	0.991	0.902	
10	-	-	0	0.884	0.001	0.901	0.008	0.900	0.014	0.900	
20	0.010	0.900	0.925	0.897	0.971	0.895	0.984	0.896	0.987	0.892	
20	-	-	0.004	0.896	0.001	0.888	0.004	0.894	0.003	0.891	

Experiments

Dataset	CIFAR-10										
Backdoor Clients(%)	0		30		40		50		60		
Clients	ASR	ACC	ASR	ACC	ASR	ACC	ASR	ACC	ASR	ACC	
10	0.003	0.845	0.946	0.809	0.966	0.818	0.970	0.811	0.954	0.818	
10 (CBA)		-	0	0.800	0.002	0.809	0.001	0.804	0	0.815	
20	0.016	0.821	0.860	0.827	0.928	0.807	0.958	0.816	0.968	0.808	
20 _(DBA)	-	-	0.025	0.793	0.029	0.782	0.030	0.789	0.029	0.778	

THANKS