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data augmentation

transfer learning
methods based on CLIP
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LLMs and LMMs

[ What species is in the image?

The image you've uploaded appears to be of a Trogon,

specifically part of the genus Trogon. However, I cannot L
provide the exact species without further information, =
as there are several species within this genus that
share similar features. x

[ Please describe the image o
L

The image shows a bird perched on a branch with a

green body, and blue tail feathers. The bird is perched
on a branch with leaves and other greenery in the
background.

5
Please describe the distinctive
features of Trogon rufus.

Black Throat: Adult males have a black throat and uppcr\
breast, which is a prominent and defining feature of this

species.
White Eye Ring: It has a white eye ring that encircles the
eye, which stands out against its black face.
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Due to the bias of imbalanced
training data,LMMs perform
poorly on some complex tasks.
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Overall framework of LTGC
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[y] with {feature 1}{feature 2}{...}."
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[ Template 2:"A photo of the class ]
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Obtaining Existing Tail-class Descriptions List
Template 1: "A photo of the class [y], {with distinctive features}{in specific scenes}."

[Prompt 1]: "Please use the Template 1 to briefly describe the image of the class [y]."

Please use the Template 1 to briefly describe
the image of the class Trogon Rufus. o
Template 1: "A photo of the class [y], {with |6ER
distinctive features}{in specific scenes}."

"A photo of the class Trogon Rufus with
vibrant green plumage perching on a

slender branch in a dense forest."




Method——Diverse Tail Images Generation

Obtaining Extended Tail-class Descriptions List

1) Inputting the existing descriptions list into LLMs

2) Designing the Prompt 2 to guide LLMs in generating the
desired descriptions for images that are absent in the given tail
class y: "Besides these descriptions mentioned above, please
use the Template 1 to list other possible {distinctive features} and
{specific scenes} for the class [y]."

-~
(

["A photo of the class Trogon Rufus with vibrant green Py
plumage perching on a slender branch in a dense forest." i

)
/

.

e
' "A photo of the class Trogon Rufus with intricately '

Besides the descriptions mentioned above, please use the
Template 1 to list other possible {distinctive features} ®
and {specific scenes} for the class Trogon Rufus.

patterned wings hovering near a nest."
"A photo of the class Trogon Rufus displaying a striking
yellow belly amidst vibrant tropical flowers."

L Descriptions List

§ Vg L

>, Extended Tail-c!ass}

) Self-Reflection
Filtered Images

T t ; Iterative Evaluation

self-reflection module:

(1) number-checking module: re-ask LLMs the
[Prompt 2] question until a maximum number Ky of
the tail class is achieved

(2) repetition-checking module: input the extended
descriptions list and the following [Prompt 3] of
each class y for LLMs’ repetition checking

K, = M,+N,
[Prompt 3]: "Please exclude any repetitive

{distinctive features} and {specific scenes}
for class [y] in this descriptions list."
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Transform Descriptions to Images

Employ T2l to generate images based on the descriptions list Ly:

i¥ =T2I(d¥),wheren € {1,...,N}

{

lower-quality images

(1) Detection: identify lower-quality images
S = Encoder,s(¥) - Encoderex(Cy),

(2) Refinement: prompt LLMs to refine its
corresponding description d;,

(3) Regeneration: regenerated the image i by
the T2l model according to the improved textual
description

iterative evaluation module

4 Generated Images
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Refinement & Regeneration e
: ‘ Detection LLMs
; [ Regenerated e
P o Images i ' -
: | CLIP || CLIP |, "A photo of the class Trogon
LLMs TH ! Image  Text | rufus with black throat,
i \ Encoder Encoder | white eye ring, ..." )
Filtered ; p—
Description ) SRt bk Class Feature Template
Image = Text

Feature | Feature

( Extended Images B

Filtered Images

[Prompt 4]: "Please use Template 2 to summarize the most distinctive
features of class [y]}."

Template 2: "A photo of the class [y] with {feature 1}{feature 2}{...}."
[Prompt 5]:"This description d;, doesn’t seem to be representative of the
class [y].Could you refine it to enhance the distinctive features of class [y]?"

Cosine Similarity

< SThreshold? Ll B
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BalanceMix

Method

How to efficiently use these generated data and original data to
perform long-tailed recognition well?
J

Original Data Extended Data

BalanceMix
First define the original data and generated data as D, and D, BalanceMix
Then BalanceMix balance-sample an image x; from D, !
[ CLIP '(‘,]

and sample an image x; from D,

Meanwhile, it mixes the images x; and x; and their

corresponding labels:
Fine-tune the CLIP’s vision encoder with LORA on all

T=A0zi+(1-2)Oz;,
F=rou+@-Nop;, — mixed data pairs (z, ) for efficient long-tail recognition




Experiments

Evaluation Setup:

Method Implementation:

Many-shot(more than 100 images)
Medium-shot (20 to 100 images),
Few-shot (less than 20 images)

For LMM: GPT-4V(ision) version of ChatGPT.
For LLM: GPT-4 version of ChatGPT.

For T2I: DAII-E .
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For the pre-trained CLIP: use ViT-B/32 for its visual encoder and the

transformer architecture for its text encoder.

In LLM’s self-reflection module, we set the maximum number Ky
to 100, 300, and 800 for iNaturalist 2018, ImageNet-LT, and

Place-LT, respectively

In the iterative evaluation module, the threshold u is set at 0.8 for
ImageNet-LT and Place-LT, and at 0.6 for iNaturalist.



Experiments

Table 1. Comparison with SOTA methods on ImageNet-LT and
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Places-LT.
Dataset ImageNet-LT Places-LT
Few All Few  All
CLIP Zero [36] 586 598 | 40.1 38.0
CLIP Finetune [36] | 345 60.5 | 227 39.7
VL-LTR [36] 593 772 | 420 50.1
RAC [28] - - 418 472
LPT [14] - - 469 50.1
LTGC(Ours) 70.5 80.6 | 52.1 54.1

Table 2. Comparison with SOTA methods on iNaturalist 2018.

Method | Many Medium Few All
Softmax 74.7 66.3 60.0 647
LADE [16] 64.4 47.7 343 523
RIDE [44] 71.5 70.0 71.6 718
PaCo [11] 69.5 73.4 73.0 730
MDCS [57] 76.5 75.5 752 756
CLIP Zero [36] 6.1 33 29 34
CLIP Finetune [36] | 76.6 74.1 702 726
VL-LTR [36] = - - 76.8
RAC [28] 75.9 80.5 81.0 802
LPT [14] ’ . 793  76.1
LTGC(Ours) 775 83.9 826 825

Table 3. Comparison with different LMMs’ methods on
ImageNet-LT and iNaturalist2018.
Method ImageNet-LT | iNaturalist 2018
LENS [3] 69.5 17.4
MiniGPT4 [60] 60.4 20.9
MiniGPT4-v2 [7] 68.5 27.1
GPT-4 72.1 64.3
Ours 80.6 82.5

Table 4. Evaluation on the effectiveness of the iterative evaluation.

Method ImageNet-LT | iNaturalist 2018
wj/o iterative evaluation 55.8 64.9
Detection and exclusion T1.5 77.4
Ours 80.6 825

Table 5. Evaluation on the effectiveness of the BalanceMix.

Method ImageNet-LT | iNaturalist
w/o BalanceMix 58.3 69.5
Balanced sample [47] 63.9 73.8
Mixup [54] 73.4 T5.2
Ours 80.6 82.5
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"A photo of the class [y]."

Aquilegia
Pubescens

Trogon
Rufus

Damaliscus
Lunatus

Figure 6. The visualization of generated images: The template A photo of the class [y]”” and LTGC. Each row represents a different
class. The four images on the left are generated using the simple template ”A photo of the class [y],” which results in images with uniform
poses and plain backgrounds. The four images on the right are from the proposed LTGC and demonstrate the diversity of classes.
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A photo of the Trogon Rufics A photo of the Damaliscus

with intricately patterned wings Lunatus with a muscular
physique resting on a sunny knoll

with birds perched on its back.

A photo of the Aguilegia Pubescens
with dew-kissed petals surrounded
by a meadow of wildflowers.

hovering near a nest.

Filtered
Images

A photo of the Trogon Rufus A phol_a ol.'uu: D“"""H‘"f“ A photo of Aquilegia Pubescens
with a striking yellow belly Lunarus with impressive spiraled | i cream white petals surrounded

horas resting on a sunny knoll by a meadow of wildflowers.
with birds perched on its back. :

hovering near a nest.

Regenerated
Images

Figure 7. The visualization of the images generated before and
after passing the iterative evaluation module. The top row dis-
plays images that were filtered out, while the bottom row shows
images regenerated by T2I after refining their corresponding de-
scriptions. More visualizations are in Appendix.
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