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Partial Label Learning
(PLL)

Appreciator A ------ > [ A ---====>» Picasso style X

Appreciator B ------ > PNy # -------> Monet style X

Appreciator C -----= S - = - — »van Gogh style v

Partial label learning (PLL), also known as superset-label learning or ambiguous label
learning, is a representative weakly supervised learning framework which learns from

inaccurate supervision information.
In partial label learning, each instance is associated with a set of candidate labels with

only one being ground-truth and others being false positive.
As the ground-truth label of a sample conceals in the corresponding candidate label set,

which can not be directly acquired during the training process, partial label learning task
is a quite challenging problem.
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To tackle the mentioned challenge, existing works mainly focus on disambiguation

Averaging-based Such as PL-KNNos averages the candidate labels of neighboring samples to make the
approaches prediction.

The ground-truth label is treated as a latent variable and can be identified through
Identification-based an iterative optimization procedure such as EM. Labeling confidence based strategy
approaches is proposed in many state-of-the-art identification based approaches for better
disambiguation.

] P1COwo22)is a contrastive learning-based approach devised to tackle label ambiguity in
Deep-learning based partial label learning.

models PRODEN 020 is @ model where the simultaneous updating of the model and
identification of true labels are seamlessly integrated.
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SDIM first built a pairwise dissimilarity matrix through the candidate label sets, and then
maximized the difference of the label confidence between two samples if their pairwise
dissimilarity between them is large according to the constructed dissimilarity matrix.
However, the dissimilarity matrix constructed by SDIM is predefined and relatively
sparse, which depresses its effectiveness.

L fylyi=0
*7N0y byl #£40
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Basic Model

Let X = [xq, X5, ..., x,,]T € R™%? denote the feature matrix
Y = [y, V2, . ¥mlT € {0,1}™%4 represents the partial label matrix

To fulfill PLL, we first build the following constrained regression model
min [ XW — F||7 + A | W%
St Pl = L By S F LY,

We initialize the label confidence matrix as F;; = Z;y] if y;j = 1, otherwise F;; = 0.
J l

We assume that the mapping from the features to the ground-truth label may be easier,
while that to the false-positive label residing in the candidate label set is relatively harder.
Accordingly, optimizing Eq. (1) will help disambiguate the candidate labels and produce a
preliminary label confidence matrix by exploring the useful information in the feature space.
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Dissimilarity Propagation guided Candidate Label

Shrmk?cgﬁrther exploit the valuable information in the label space, we first use candidate labels to
construct a dissimilarity matrix Dy € R,,xm » i-€.,

1, if ysy; =0
Doij = .
0, otherwise.

Therefore, D, indicates the semantic dissimilarity of samples.

We then multiply the label confidence matrix with its transpose to create a similarity matrix
termed as FFT, whose (i, j)-th element indicates the similarity between x; and X;.

As the semantic dissimilarity matrix D, and similarity matrix FFT form an adversarial
relationship, we use this adversarial prior to shrink the solution space of F by:

Do © FF'

’
1,

min
F
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Dissimilarity Propagation guided Candidate Label
Shrinkage

D& FF"

min ;
F 1

Unfortunately, directly minimizing Eq. (3) cannot help produce a better label confidence
matrix F, because D, is mferred from the candidate label set, and the (i, j)-th element of D,
is positive only when yly] = 0, while F is upper bounded by Y, the (i, j)-th element of FFT is

positive only when yly] + 0. That is the locations of the positive elements of D, and FFT are
complementary.
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Dissimilarity Propagation guided Candidate Label

Shrmk@&%ifically, we leverage the local geometric structure of samples to enhance D,. Note that
each column of D (e.g., D;) can represent the dissimilarity relationships between a sample
(e.g., x;) and the other samples. If two samples x; and x; are close to each other in the

feature space, their dissimilarity relationships (D; and D ;) should also be similar. To capture

the feature similarity, we build a local geometric matrix S € R,,,«,,, using a radial basis
function (RBF) kernel:

{exp(—lwz- —x;||3/0?), if j € N;
Sij =

0, otherwise,

Based on §, the dissimilarity propagation guided candidate label shrinkage module becomes

ii |D.; — D2

mm‘
——> i

S.t. OTILXTH S D g 1wnangD‘ij =5 Dnﬁljiif DOQJ = 1

min
F
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Optimization and

Settlr‘gaking all the above considerations into account, the proposed model finally becomes:

min_[|XW — F|% + A [W|% + « HD ® FFTH + Tr(DLD")
W.F.,D 1

s.t. qu — 1??1:0qu = E S Y-,\Ome S D = 1n1xm;Dij — Dﬂij:if DOt’j - 1;

where L € R™*™ = D¢ — § is a graph Laplacian matrix, and Dg € R™*™ is a diagonal matrix
with the i-th diagonal element Dg; = Y7, S;;. Tr(+) returns the trace of a matrix. «, f = 0 are
two hyper-parameters to balance different terms.

We adopt IALM to solve the problem in Eq. (6). To simplify Eq. (6), we introduce an auxiliary

matrix A = D € R™™ and the solution can be obtained by solving the following augmented
Lagrange equation:

min _|XW — F|2 + A [W]? + o ”A O FF'
W.F.D,A

‘1 +ATH(DLD") + (®,D — A) + £ |D — A}

5.1 F]-q — ]-rng OfrrLXq g F S Y: O'rn.)(m S A S 11n,><7n,; A—’L_j = DOJJ)If DO%J = 1;
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W subproblem

min [ XW — F|[% + A [[W]]3,

We extend the above model to a kernel-based non-linear version. Let ¢(-): R - R" denote
the feature transformation that maps the origin feature space X to a higher dimensional
Hilbert space ¢ (X).

According to the Representer Theorem, W can be expressed as a linear combination of the
input features, i.e. W = ¢(X)TH, where H € R™*4 stores the combination weights.

Then, we have ¢(X)W = KH, where K = ¢p(X)p(X)T € R™™ s the kernel matrix and each
element K;; = K (x;, x;). Finally, the nonlinear version is represented as:

2
_ FH L ATr(H'KH),
F

min -
H,b

In the experiments, we use the RBF kernel as the kernel function, i.e.,
K(x;,2;) = exp(—||z; — 2;]|3/0?), for our method and the compared ones. When the first
derivatives of H and b reach 0,

1,17 K\ 1, 1T F
H:<K—E—A17nan_17m) (F_ iz )’b:
T

i (F ]-'m _H K ]-rn)
(i’

1tH

mputing
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F subproblem
IIgIl |F — PH‘; + « HA ® FFTH
1
s.t. F1, = 1,,,0pxq <F LY,

where P = KH + 1,,bT € R™*4 is the output matrix of the model. Eq. (12) can be formulated
as a standard quadratic programming (QP) problem, and solved by any QP tools.

D subproblem

2

P

min STr(DLD") + HD A+ —
D L

F

Eq. reaches the minimum when its first-order derivative with respect to D vanishes, leading
to

D = (uA — ®)(26L + plmxm)
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mputing

A subproblem

P 2

o || » S
1 2 ™

s.L UTH.XTH. g A <_: ]-m,xfm.; AIJ — DU?._'}}lf DU?_‘} =4

min v HA ® FF'
A

Eqg. can solved element-wisely, i.e.,

A T(T (7_ (p:D-i—fI)—azFFT)))
= 1 | To ;
,Li.

where T, T, 7; are three thresholding operators in elementwise, i.e., T(CU) = 1,if Dy;jj =1
:]-'1(CU) = min(l, Cij)’ %(CU) = maX(O, CU)

Finally, the Lagrangian multiplier matrix and u are updated by

PP+ puD-A)
p < min(1.144, fimax ),
where p,,,4,, = 1010 is a predefined upper bound for p.
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Algorithm 1 The Pseudo Code of the Proposed Method

Input: D: the partial label training set; A, «, 3, k: the parameters of model; Z: an unseen test sample
Output: 7: the predicted label for sample &
: Construct the dissimilarity matrix Dg according to Eq. (2) and the kernel matrix K = [K(zi, ;)| mxm
Initialize D = A = ® = Oy, 0 = 107*
while not converged do
Update H and b by Eq. (11)
Update F by solving Eq. (12)
Update D by Eq. (14)
Update A by Eq. (16)
Update @, i« by Eq. (17)
Check the convergence condition ||D — Alle < 1073
: end while
: Return the predicted label 3 according to Eq. (18).

= 0 N0 G0 = X LA K o

f— f—
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Figure 1: The classification accuracy of each algorithm as € increases from 0.1 to 0.7 with p=1, r=1.
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Table 1: Classification accuracy (mean#std) of each comparing algorithm on four synthetic data sets as
r increases from 3 to 6. e/o indicates whether the accuracy of DPCLS is statistically superior/inferior

to the compared algorithm according to the pairwise t-test at 0.05 significance level.

Dataset |r| DPCLS CLPL PL-SVM  PL-KNN PL-DA IPAL AGGD PL-CLA SDIM
31.9124+.008 .604+.023e .668+.034e .695+.025e¢ .7824+.020e .7931+.018e¢ .898+.011e .880+.007e .917+.007

o 41.899+.011 .5944.023e .5771+.057e .661+.026e .768+.022e .7724+.017e .880+.013e .855+.011e .8914.015
5(.880L£.012 .535+.015e .543+.070e .668+.018e .751+.016e .7901+.010e .855+.017e .845+.018e .849+.017e
6|.858+.017 .525+.020e .452+.062e .645+.020e .7331+.020e .776+.011e .824+.015e¢ .824+.015e¢ .824+.018e
31.807+.040 .7804+.037 .262+.034e .247+.033e .347+.06le .715+.064e .764+.054 .735+.055e .744+.044e
Orl 41.776.049 .7434+.031 .196+.052e .216+.030e .2874.042e .665+.065e .730+£.065 .673x.066e .692+.067e
5(.736£.041 .7044.032 .158+.029e .189+.027e .2474.040e .594+.045e .677+.067e .607+.049e .622+.0560e
6.669L.042 .6604+.045 .114+.024e .159+.025e 2184+.029e .5361.047e .646+£.073 .545+.050e .556+.053e
31.062L£.007 .058+.007 .041+£.006e .021+.004e .0224.004e .060£.009 .056+£.010 .055+.008e .047L.006e
g 41.057+£.007 .055+.007 .0434+.005e¢ .0204+.005e¢ .021+.005e .055+.009 .0544+.009 .053+.007 .0454.005e
5/.055+.009 .050+.007 .043+.005e .020+.005e¢ .0224.005e .0504+.009 .047+.008e .044+.009e .037+.007e
6(.048+.009 .0424+.007 .029+.007e .020+.003e .020+.003e .046+.009 .043+.008 .041+.006e .032+.006e
31.337+.007 .2484+.007e .208+.013e .1154+.017e .1784+.014e .2861+.012e¢ .333+.009 .2914.009e .305+.010e
S — 41.3261L.008 .244+.009e .190+.020e .121+.028e .1701+.013e .2824-.010e .325+.007 .284+.011e .300L.011e
51.323+.009 .2404+.010e .169+.019e .1164-.025¢ .189+.051e .2784+.009e¢ .319+.005 .278+.010e .298+.011e
6(.3224+.009 .2404.010e .1484+.013e .1034+.029e .1864.043e .2704+.009e¢ .316+.007 .2764.009e .295-+.007e
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Table 2: Classification accuracy (meanzstd) of each algorithm on real-world partial label data sets. e/o
indicates whether the accuracy of DPCLS is statistically superior/inferior to the compared algorithm
according to the pairwise t-test at 0.05 significance level. “S” and “D” indicate shallow and deep PLL

methods respectively.

Type| Method FG-NET FG-NET3 FG-NET5 Lost MSRCv2  BirdSong Malagasy Soccer Player Yahoo! News
DPCLS .077+.009 .436-+.017 .5861.011 .770-L.024 .5574+.014 .751+.009 .6761.004 .532+.002 .6264.003
CLPL  .0584.009e .3834.016e .5381+.017e .665+£.019e 371£.010e .610+£.012e¢ 675L£.016 .4971+.002e .544+.004e
PL-SVM .052+.010e .357+.022e¢ .5114+.026e .578+.078e .310+.060e .682+.023e 564+.061e .500+.002¢ .546+.006e
PL-KNN .0384.005e .287+.022e .4331+.019e .3341.021e .3914.023e .657+.014e .573+.007e .4934.002e¢ .3831.003e

S | PL-DA .042+.004e .166+.050e .255+.070e .309+.069e¢ .416+.022¢ .690-+.013e .606+.008e .495+.003e¢ .397+.004e
IPAL  .0524.006e .3474.015e .5101-.016e .610+.020e .494+.024e .7224.006e .621+.017e .530£.005 618+£.007e
AGGD .075+.010 .4234+.016 .568-+.018e¢ .7024.024e .4774+.019e .722+4.014e .593+.050e .5274+.003e .616-4+.004e
PL-CLA .074+.011 .424+.020 .5714£.015e .696+.021e .470+.016e .722+.012e .654+£.005e .5251.003e .6061.004e
SDIM  .0734+.009 .4234+.022 .568+.019e .736+.023e .475+.016e .7244+.012e¢ .643+.007¢ .5244+.003e .607+.004e
| RC  .0724.009 .391+.012e 4881.020e 740026 .4461+.019e 715+.007e .6641.004e 5321004  .620-.003e
D |PRODEN .071+.009 .415+.016e .5674.025¢ .712+.032¢ .430+.019¢ .704+.013e .665+.017e¢ .528+.004e .620+.003e
CAVL .071£.006 .365+.020e .488+.021e .747+.060e .4444+.013e .695+.017e .668+.039 .510+.004e .628+.004
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Table 4: Ablation study of our method on the real-world partial label data sets.

FG-NET Lost MSRCv2  BirdSong  Malagasy Soccer Player Yahoo! News

DPCLS  .077+.009 .770+.024 .557+.014 .751+.009 .676+.004 .532+.002  .626+.003
DPCLS-LM .0674.009e .6524.023e .3574+.009e¢ .577+.012e¢ .587+.014e .492+4.002e .447+.004e
DPCLS-KE .0684.009e¢ .701+.023e .388+.014e .595+.014e .6744+.009 .4954+.002¢ .4634.004e
DPCLS-DP .073+.010 .687+.027e¢ .466+.018e .721+.014e .612+.011e .5244+.003e .604+4.004e
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