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Partial Label Learning with Dissimilarity Propagation 

guided Candidate Label Shrinkage



Background

Partial Label Learning 
(PLL)

Partial label learning (PLL), also known as superset-label learning or ambiguous label 
learning, is a representative weakly supervised learning framework which learns from 
inaccurate supervision information. 
In partial label learning, each instance is associated with a set of candidate labels with 
only one being ground-truth and others being false positive. 
As the ground-truth label of a sample conceals in the corresponding candidate label set, 
which can not be directly acquired during the training process, partial label learning task 
is a quite challenging problem.



Related work

Averaging-based 
approaches 

Such as PL-KNN(2005) averages the candidate labels of neighboring samples to make the 
prediction.

Identification-based 
approaches

The ground-truth label is treated as a latent variable and can be identified through 
an iterative optimization procedure such as EM. Labeling confidence based strategy 
is proposed in many state-of-the-art identification based approaches for better 
disambiguation.

Deep-learning based 
models

PICO(2022) is a contrastive learning-based approach devised to tackle label ambiguity in 
partial label learning.
PRODEN(2020) is a model where the simultaneous updating of the model and 
identification of true labels are seamlessly integrated.

To tackle the mentioned challenge, existing works mainly focus on disambiguation



Motivation

SDIM first built a pairwise dissimilarity matrix through the candidate label sets, and then 
maximized the difference of the label confidence between two samples if their pairwise 
dissimilarity between them is large according to the constructed dissimilarity matrix. 
However, the dissimilarity matrix constructed by SDIM is predefined and relatively 
sparse, which depresses its effectiveness.



Method

Let 𝑋 = 𝑥ଵ, 𝑥ଶ, … , 𝑥௠
் ∈ ℝ௠×ௗ denote the feature matrix 

𝑌 =  𝑦ଵ, 𝑦ଶ, … 𝑦௠
் ∈ 0, 1 ௠×௤ represents the partial label matrix

To fulfill PLL, we first build the following constrained regression model

We initialize the label confidence matrix as 𝐹௜௝ =
ଵ

∑ ௬೔ೕೕ
 𝑖𝑓 𝑦௜௝ = 1, otherwise 𝐹௜௝  =  0.

We assume that the mapping from the features to the ground-truth label may be easier, 
while that to the false-positive label residing in the candidate label set is relatively harder. 
Accordingly, optimizing Eq. (1) will help disambiguate the candidate labels and produce a 
preliminary label confidence matrix by exploring the useful information in the feature space.

Basic Model



Method

Dissimilarity Propagation guided Candidate Label 
ShrinkageTo further exploit the valuable information in the label space, we first use candidate labels to 

construct a dissimilarity matrix 𝐷଴ ∈ 𝑅௠×௠ , i.e.,

Therefore, 𝐷଴ indicates the semantic dissimilarity of samples.

We then multiply the label confidence matrix with its transpose to create a similarity matrix 
termed as 𝐹𝐹், whose (i, j)-th element indicates the similarity between 𝑥௜ and 𝑥௝.

As the semantic dissimilarity matrix 𝐷଴ and similarity matrix 𝐹𝐹் form an adversarial 
relationship, we use this adversarial prior to shrink the solution space of 𝐹 by:



Method

Dissimilarity Propagation guided Candidate Label 
Shrinkage

Unfortunately, directly minimizing Eq. (3) cannot help produce a better label confidence 
matrix 𝐹, because 𝐷଴ is inferred from the candidate label set, and the (i, j)-th element of 𝐷଴

is positive only when 𝑦௜𝑦௝
் = 0, while 𝐹 is upper bounded by 𝑌, the (i, j)-th element of 𝐹𝐹் is 

positive only when 𝑦௜𝑦௝
் ≠ 0. That is the locations of the positive elements of 𝐷଴ and 𝐹𝐹் are 

complementary.



Method

Dissimilarity Propagation guided Candidate Label 
ShrinkageSpecifically, we leverage the local geometric structure of samples to enhance D଴. Note that 

each column of 𝐷 (e.g., 𝐷.௜) can represent the dissimilarity relationships between a sample 
(e.g., 𝑥௜) and the other samples. If two samples 𝑥௜ and 𝑥௝ are close to each other in the 
feature space, their dissimilarity relationships (𝐷.௜ and 𝐷.௝) should also be similar. To capture 
the feature similarity, we build a local geometric matrix 𝑆 ∈ ℝ௠×௠ using a radial basis 
function (RBF) kernel:

Based on 𝑆, the dissimilarity propagation guided candidate label shrinkage module becomes



Method

Optimization and 
SettingTaking all the above considerations into account, the proposed model finally becomes:

where 𝐿 ∈ ℝ௠×௠ = 𝐷ௌ − 𝑆 is a graph Laplacian matrix, and 𝐷ௌ ∈ ℝ௠×௠ is a diagonal matrix 
with the i-th diagonal element 𝐷ௌ௜௜ = ∑ 𝑆௜௝

௠
௝ୀଵ . 𝑇𝑟(·) returns the trace of a matrix. 𝛼, 𝛽 ≥ 0 are 

two hyper-parameters to balance different terms.

We adopt IALM to solve the problem in Eq. (6). To simplify Eq. (6), we introduce an auxiliary 
matrix 𝐴 = 𝐷 ∈ ℝ௠×௠ and the solution can be obtained by solving the following augmented 
Lagrange equation:



Method

W subproblem

We extend the above model to a kernel-based non-linear version. Let 𝜙 ⋅ : ℝௗ → ℝ௛ denote 
the feature transformation that maps the origin feature space 𝑋 to a higher dimensional 
Hilbert space 𝜙(𝑋).

According to the Representer Theorem, 𝑊 can be expressed as a linear combination of the 
input features, i.e. 𝑊 = 𝜙 𝑋 ்𝐻, where 𝐻 ∈ ℝ௠×௤ stores the combination weights.

Then, we have 𝜙 𝑋 𝑊 = 𝐾𝐻, where 𝐾 = 𝜙 𝑋 𝜙 𝑋 ் ∈ ℝ௠×௠ is the kernel matrix and each 
element 𝐾௜௝ = 𝒦(𝑥௜, 𝑥௝). Finally, the nonlinear version is represented as:

In the experiments, we use the RBF kernel as the kernel function, i.e., 
,                                                       , for our method and the compared ones. When the first 
derivatives of 𝐻 and 𝑏 reach 0,



Method

F subproblem

where 𝑃 = 𝐾𝐻 + 1௠𝑏் ∈ ℝ௠×௤ is the output matrix of the model. Eq. (12) can be formulated 
as a standard quadratic programming (QP) problem, and solved by any QP tools. 

Eq. reaches the minimum when its first-order derivative with respect to D vanishes, leading 
to

D subproblem



Method

A subproblem

Eq. can solved element-wisely, i.e.,

where 𝒯, 𝒯଴, 𝒯ଵ are three thresholding operators in elementwise, i.e., 𝒯 𝐶௜௝ = 1, 𝑖𝑓 𝐷଴௜௝ = 1,
𝒯ଵ 𝐶௜௝ ≔ min (1, 𝐶௜௝), 𝒯଴ 𝐶௜௝ ≔ max (0, 𝐶௜௝).

Finally, the Lagrangian multiplier matrix and 𝜇 are updated by

where 𝜇௠௔௫ = 10ଵ଴ is a predefined upper bound for 𝜇.
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