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* Reinfocement learning

(a) online reinforcement learning

rollout data {(s;,a,,8),7)}

Background

(b) off-policy reinforcement learning

rollout data {(s.a;,.8),r;)}

e Offline Reinfocement learning

H
J(w) = Brnip.t) Z v'r(st,at)
t=0

constraint

v

(c) offline reinforcement learning

rollout(s)

with any policy

max J(mg) — al(s q)~p |C(5,a)],
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* Problem Statement
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{a) Regularized offline RL with uniform sampling (b} Regularized offline RL with re-weighted dataset

Behavior - Learned Re-weighted behavior High-return Low-return
policy a5 policy my policy 75 action action

Figure 1: The dots represent actions in the dataset, where imbalanced datasets have more low-return
actions. (a) Regularized offline RL algorithms [22, 7, 18] equally regularize the policy my on each
action, leading to imitation of low-return actions and a low-performing my. The color under the curves
shows the policy’s performance .J (g ), with red indicating higher performance and blue indicating
lower performance. (b) Re-weighting the dataset based on actions’ returns allows the algorithm to
only regularize on actions with high returns, enabling the policy g to imitate high-return actions
while ignoring low-return actions.




Y

iy

B

L \\\\\\\HIJM% —
2~
N
\§:

%% 2
1952 g

%
P
(¥}

L=

g

b

=,

&

£

Background

Definition 3.1 (Dataset imbalance). RPSV of a dataset, V. [G(7;)], corresponds to the second-
order moment of the positive component of the difference between trajectory return: G(7;) =

(s!,al) and its expectation, where 7; denote trajectory in the dataset:

T;—1 t,
g JF
* i f 2 .
V. [G(1)] = E, D [(G(Tz) - IETWD[G(TE-)DjL] with 2, = max{z, 0}, (3)
3
RPSV . .
%“2 I High ° unnecessarlly conservative
% B Low
Al .
0 = =] L A
—=0.5 0.0 0.5 1.0 1.5 Imbalance dataset + constraint

Return G(T1;)

Figure 2: Return distribution of datasets with high
and low RPSV. Low RPSV datasets have returns
centered at the mean, while high RPSV datasets
have a wider distribution extending towards higher

returns. See Appendix A.4 for details.
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, Methodology

* Mitigating Unnecessary Conservativeness By Weighting Samples

Adding more experiences from high-performing policies

Importance sampling Difficulty:

The key challenge is determining the weights
Dw(& -:1.) w since the state-action distribution of the
—’D(S Ja) 3 (Dw unknown) better policy mDw is initially unknown

|

off-policy evaluation techniques(optidice)

w(s,a) =

to determine if a weighting
function corresponds to a high-return policy

I 7

max JA (1) — s, o)~ [W(8,a)C(5¢,at)]

ﬂ :

" r hf'}r l. 4 ™l & ]
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Methodology

« OptiDICE

provides a framework for improving policy optimization using offline datasets in reinforcement learning

max minE(, gy0a|R(s, a)] — aDy(d||d") (5)

+ X u(s) ((1 = 7po(s) +(Ted)(s) - (B.d)(s) ),

:(1 - f}r)ESNP[] [U(S)l + E(S,a}mdD [—D{f(’lﬂ(S, (1))]

+ E(s.0)~ap [w(s,a)(eu(s,a))] =: L(w,v). (7)
Dy (d"||d") := E(s,a)~ar [f(d—i;({i—?])} F = xlogx s KL%

(Bid)(s) := X on d(S*—a)_

(Ted)(s) = L5 5 T(sl5,)d(5,a)

DICE fi] 8 T DA B A
IR AS T 43 A
RS, (L85
o TR TR R
6 H b7




, Methodology: Density ratio Weighting (DW)

Our goal is to discover a weighting function w that can emulate drawing state-action samples from
a better dataset Dw that is collected by an alternative behavior policy nDw with higher return than
the behavior policy nD that collected the original dataset D

* Optimizing the Weightings

JV(mp, ) = [|':(q i p,, [7(s,a)] = [E{SEQ_JND lw(s,a)r(s,a).
when the the dataset Dw represents a stationary state-action distribution:

Dw(s") = (1 —)po(s’) + ,ZT '|5,0)Dy(s,0)Vs' €S, Dy(s):= ) Dy (7)
a'cA

D () Z T(s'|s,a)Dy(s,a) Vs € S.




, Methodology: Density ratio Weighting (DW)

R H5 Seow s flow(s,a) (I, AR 20 20 R AT

ZT '|s,a)w(s,a) Vs €8, 5] = Z Duik, ) (9)

JV(mp,) = E(s,a)~D, [T(5;0)] = E(s,a)~D [W(5,a)7r(s,a)]. (6)

¥ (6> LA (9 NPAREH, WA LU A 2R AL B Fx:
max J(7p,, ) = E(s,a)~p [w(s,a)r(s,a)] (10)

subject to E(s 4 snp [W(s) —w(s,a)|s] =0 Vs' € S.




Implementation

HITSEMN, FaHRESDRGARTHE TR
Dy(s,a)  Dy(s)mp, (als) B D, (s) y mp, (als)

w(s,a) = —

D(s,a) D(s)mp(als)  D(s) mp(als)

We (S, a) = exp @(s) exp (s, a), wy(s) = exp &(s) (12)

¢ and Y are neural networks
(two-layer Multilayer Perceptron (MLP) with 256 neurons and RelLU activation in each layer.)

max Egs g sy up | We,u(s,a)r(s,a) —Ap (we(s') — we (s, a))? | — Ak Dk r(Du||P), (13)

é"ll.lll'r o Vo 4 \_~
] Return Bellman flow conservation penalty KL regularization
B AR AL H b Il 4R Rk b ST i 30 A




,I\/Iethodology: DW & 1QL

Algorithm 1 Implicit Q-learning

Initialize parameters ), 6, é, o.

TD learning (IQL):

for each gradient step do
¥ ¥ — Av Vi Ly (V) Lv(®) = B¢ o) ~p[L}(Q;(s,a) = Vs(s))]
0 60— AQVoLQ(0)=[Lo(0) = E(ra.e) ~pl(r(5,a) + 1V (s) — Qo (5,))?
0 (1—a)fd+ab

end for

Policy extraction (AWR):

for each gradient step do
¢ < @ — AV Lr(9) = [La(9) = Eio) ~plexp(B(Q4(5,0) — Vis(s))) log mo(als)].

end for

i



,I\/Iethodology: DW & 1QL

IQL. We reweight state-value function (1), state-action value function (i.e,. Q-function, ()), and
policy (7) in IQL as follows:

11%}11 E(s,0)~p [We(s)L5(Q(s,a) — V(s))] (20)
11511 E(s6,5)~D [ufrﬂ_ﬁ-;(s. a)(r(s,a) +yV(s') — V(s))ﬂ (21)
max E(s,a)~D [We.p(s,a) exp (B(Q(s,a) — V(s)))logm(als)], (22)

where L5 denotes the upper expectile loss [18] and 3 denotes the temperature parameter for IQL.
Our implementation is adapted from the official implementation® for implicit Q-learning (IQL) [18].
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Algorithm 1 Density-ratio weighting with generic offline RL algorithms (details in Appendix A.3)

: Imput: Dataset D
Initialize policy m and weighting function wy, 4,
while not converged do
Sample a batch B of tuples of states, actions, rewards, and next states (s, a, r, s") from D
Update wgy o with batch B using Equation 13
Update policy 7 and value function with an offline RL training objective with weights
we (S, a) and B (e.g., [22, 7, 18])
7: end while

sy SN ¢ R =N G T S




Summary
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, Experiments

%

* Two stages

(i) Trajectories with similar initial states
(ii) Trajectories with diverse initial states

* interquartile mean (IQM)

discards the bottom and top 25% of the runs and calculates the mean score of the remaining 50% runs (=N
M/2c for N runs each on M tasks)

FRGA R KA BT, (EPUA T LN RSt
« Baseline

advantage-weighting (AW) (provide a better initial sampling distribution to train the weightingfunction in DW)
percentage-filtering (PF)

Paw (st, at) oc exp((G(1:) — Vo(sh))/n) (Advantage-weighting) (14)
Per(st,a}) < 1[G(1;) > Ga) (Percentage-filtering), (15)
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Experiments

m Uniform PF-20% . AW-L . AW-H . DW-AW (ours)
N PF-10% mm PF-50% Em AW-M s AW-XH B DW-Uniform (ours)

CQL TD3BC

oy @
o o

oM
normalized return
N
o o

(a) Results on imbalanced datasets of trajectories with similar initial states (Section 5.1).
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(b) Results on smaller version of datasets used in Figure 3a.

Figure 3: (a) Our methods, DW-AW and DW-Uniform, achieve higher return than Uniform, indicating
that DW can enhance the performance of offline RL algorithms on imbalanced datasets. Note that
our methods in IQL, although not surpassing AW and PF-10% in performance, ours can be applied to
offline RL dataset that are not curated with trajectories. (b) Our methods outperform Uniform in CQL,
IQL, and TD3BC, indicating no significant overfitting in smaller datasets. DW-AW demonstrates
superior returns compared to AW and PF, particularly in CQL, indicating our method effectively
leverages limited data. IQL shows limited gains likely due to its difficulties in utilizing data from the
rest of low-return trajectories in the dataset (see Section 5.2).
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Figure 4: Results on imbalanced datasets with trajectories starting from diverse initial states (Sec-
tion 5.3). Compared to Figure 3a, the performance of uniform sampling and AW decrease, showing
that diverse 1nitial states exacerbate the issue of imbalance. Our methods. DW-AW and DW-Uniform,

achieve higher return than all the baselines, which suggests DW is advantageous in broader types of
imbalanced datasets.




