

Parameter-free Online Test-time Adaptation

Malik Boudiaf ÉTS Montreal * Romain Mueller FiveAI Ismail Ben Ayed ÉTS Montreal Luca Bertinetto FiveAI

CPVR 2022

Background

Test Time Adaptation

Typical Settings Comparison

setting	source data	target data	train loss	test loss
fine-tuning	-	x^t, y^t	$L(x^t, y^t)$	-
domain adaptation	x^s, y^s	x^t	$L(x^s, y^s) + L(x^s, x^t)$	-
test-time training	x^s, y^s	x^t	$L(x^s, y^s) + L(x^s)$	$L(x^t)$
fully test-time adaptation	-	x^t		$L(x^t)$

Background

Two Representative Methods

• BN Adapt

Using the BN statistics μ_t , σ_t in each test minibatch to replace the original statistics of μ_s , σ_s

$$\operatorname{IN} \xrightarrow{\mu} \overset{\sigma}{\longrightarrow} \overset{\gamma}{\longrightarrow} \overset{\beta}{\longrightarrow} \overset{\rho}{\longrightarrow} \overset$$

• Tent

Minimize the entropy of each test sample's label prediction; only update the BN affine parameters γ , β

$$\begin{array}{c|cccc} \theta & y^{s} \\ & & & & \\ \hline y^{s} \rightarrow & \hat{y}^{s} \rightarrow & \hat{y}^{s} \rightarrow & \\ \hline & & & \\ \hline \end{array} \\ \hline & & & \\ \hline \hline \\ \hline & & & \\ \hline \end{array} \end{array} \\ \hline \\ \hline & & & \\ \hline \hline \end{array} \end{array} \end{array}$$

Motivation

Problems: The test data in each batch may be non i.i.d

Motivation

Problems: TTA methods are highly sensitive to hyper-parameters

Assume true label prediction as p, maximize the log-likelihood

$$\mathcal{L}(\tilde{\mathbf{Z}}) = \log\left(\prod_{i=1}^{N}\prod_{k=1}^{K}p(\mathbf{x}_{i},k)^{\tilde{z}_{ik}}\right) \stackrel{\mathbf{c}}{=} \sum_{i=1}^{N}\tilde{\mathbf{z}}_{i}^{T}\log(\mathbf{p}_{i})$$

To prevent over-confident assignments; Consider a negative-entropy regularization

$$-\sum_{i=1}^{N} \tilde{\mathbf{z}}_{i}^{T} \log(\mathbf{p}_{i}) + \sum_{i=1}^{N} \tilde{\mathbf{z}}_{i}^{T} \log(\tilde{\mathbf{z}}_{i}) = \sum_{i=1}^{N} \mathrm{KL}(\tilde{\mathbf{z}}_{i} || \mathbf{p}_{i}) \qquad \sum_{i} \mathrm{KL}(\tilde{\mathbf{z}}_{i} || \mathbf{q}_{i})$$

$$\mathcal{L}^{\text{LAME}}(\tilde{\mathbf{Z}}) = \sum_{i} \text{KL}(\tilde{\mathbf{z}}_{i} || \mathbf{q}_{i}) - \sum_{i,j} w_{ij} \tilde{\mathbf{z}}_{i}^{T} \tilde{\mathbf{z}}_{j}$$

$$w_{ij} = w(\phi(\mathbf{x}_i), \phi(\mathbf{x}_j))$$
$$w(\phi(\mathbf{x}_i), \phi(\mathbf{x}_j)) = \begin{cases} 1 & \text{if } \phi(\mathbf{x}_i) \in \text{kNN}(\phi(\mathbf{x}_j)) \\ 0 & \text{otherwise} \end{cases}$$

Methods

Likelihood Shift

Prior Shift

$$p_s(\mathbf{x}|\mathbf{y}) \neq p_t(\mathbf{x}|\mathbf{y})$$

 $p_s(\mathbf{y}) \neq p_t(\mathbf{y})$

Experiments

Figure 3. *Cross-shift* validation for TENT [57] (left) and our proposed LAME (right). A cell at position (i, j) shows the absolute improvement (or degradation) of the current method w.r.t. to the baseline when using the optimal hyperparameters for scenario *i*, but evaluating in scenario *j*. Legend: A = i.i.d., B = non i.i.d., C = i.i.d. + prior shift, D = non i.i.d. + prior shift. More details on the scenarios in Sec. 6

Experiments

Method		Original	Torchvision	SimCLI	R Mean
Baseline		52.07	53.39	47.68	51.0
PseudoLabe	[25]	52.17	45.53	47.67	48.5
SHOT-IM [3	0]	52.11	50.77	47.64	50.2
TENT [57]		49.74	28.54	37.00	38.4
AdaBN [28]		49.31	50.43	41.07	46.9
LAME		55.70	57.74	51.46	55.0
Method	RN-18	8 RN-50	RN-101	EN-B4	ViT-B/16
Baseline	47.28	52.07	54.93	62.67	67.69
PseudoLabel [25]	33.13	52.17	55.17	59.64	69.86
SHOT-IM [30]	42.95	52.11	54.98	59.64	65.33
TENT [57]	28.59	49.74	53.04	53.27	54.00
LAME	51.46	55.70	58.79	66.17	71.22

Experiments

Thanks