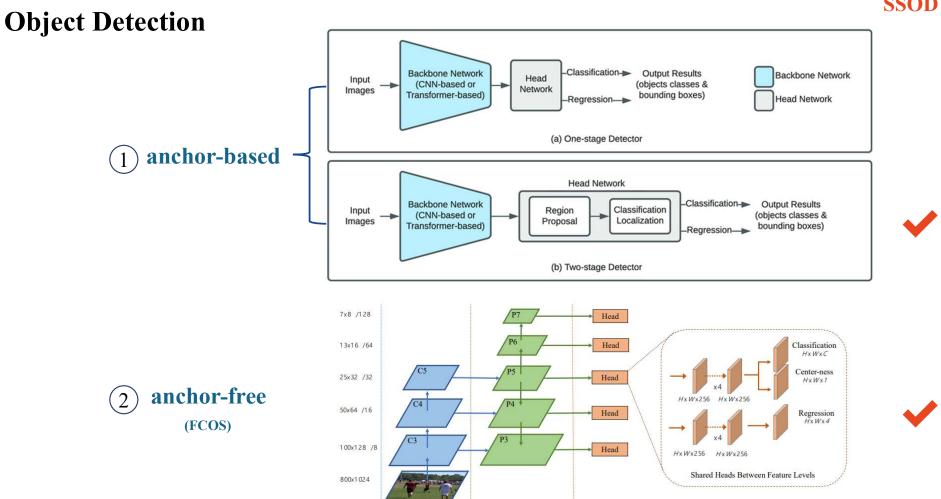


Current Status and Development Trend of Semi-supervised Objective Detection Research

欣子豪 2024.3.11

SSOD



Feature Pyramid

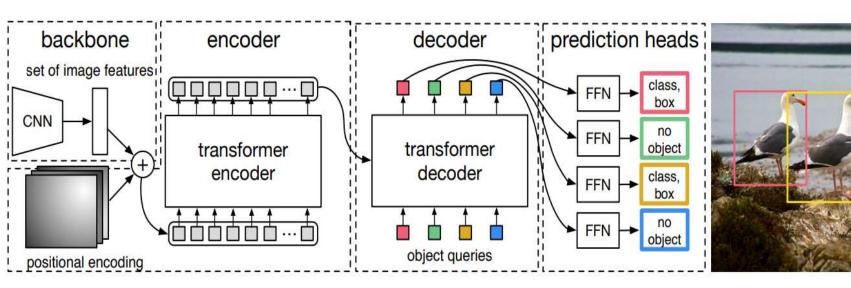
Classification + Center-ness + Regression

HxW/s

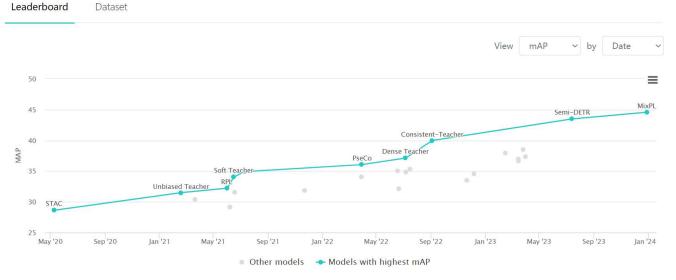


(2) anchor-free

(FCOS)

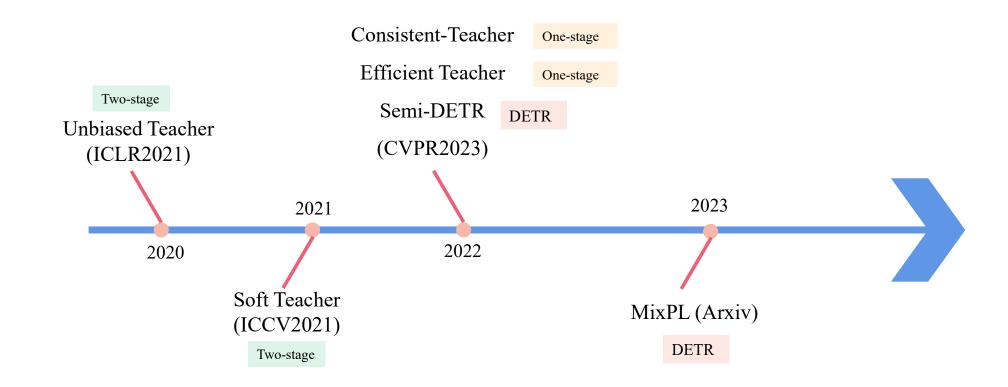


Semi-Supervised Object Detection on COCO 10% labeled data



Rank	Model		mAP 1	detector	Year
1	MixPL	DETR	44.6	DINO-Res50	2023
2	Semi-DETR	DETR	43.5	DINO-Res50	2023
3	Consistent-Teacher	One-stage	40.0	RetinaNet- Res50	2022
4	ARSL	Anchor-free	38.5	FCOS-Res50	2023
5	Efficient Teacher	One-stage	37.9	YOLOv5-L	2023
6	Revisiting Class Imbalance	Two-stage	37.4	FasterRCNN- Res50	2023
7	Dense Teacher	Anchor-free	37.13	FCOS-Res50	2022
8	MixTeacher-FCOS	Anchor-free	36.95	FCOS-Res50	2023
9	MixTeacher-FRCNN	Two-stage	36.72	FRCNN- Res50	2023
10	PseCo	Two-stage	36.06	FasterRCNN- Res50	2022

12	Unbiased Teacher v2	Anchor-free	35.08±0.02	FCOS-Res50	Unbiased Teacher v2: Semi-supervised Object Detection for Anchor-free and Anchor-based Detectors	0	Ð	2022
13	Adaptive Class-Rebalancin	g Two-stage	34.92±0.22		Semi-Supervised Object Detection with Adaptive Class-Rebalancing Self-Training		Ð	2021
14	VC	Two-stage	34.82	FasterRCNN- Res50	Semi-supervised Object Detection via Virtual Category Learning	0	Ð	2022
15	ASTOD	Two-stage	34.58		Adaptive Self-Training for Object Detection	0	Ð	2022
16	Omni-DETR	DETR	34.1		Omni-DETR: Omni-Supervised Object Detection with Transformers	O	Ð	2022
17	Soft Teacher	Two-stage	34.04	FasterRCNN- Res50	End-to-End Semi-Supervised Object Detection with Soft Teacher	0	Ð	2021
18	SSOD with OCL and RUPL	Two-stage	33.53		Semi-Supervised Object Detection with Object-wise Contrastive Learning and Regression Uncertainty		Ð	2022
19	RPL	Two-stage	32.23± 0.14		Rethinking Pseudo Labels for Semi-Supervised Object Detection		Ð	2021
20	II-net (resnet-50)	Two-stage	32.166		Improving Localization for Semi-Supervised Object Detection	0	Ð	2022



Unbiased Teacher For Semi-Supervised Object Detection

Yen-Cheng Liu^{1,2}*, Chih-Yao Ma², Zijian He², Chia-Wen Kuo¹, Kan Chen², Peizhao Zhang², Bichen Wu², Zsolt Kira¹, Peter Vajda²

Georgia Tech, ²Facebook Inc.

{ycliu, cwkuo, zkira}@gatech.edu,
{cyma, zijian, kanchen18, stzpz, wbc, vajdap}@fb.com

Two-stage

ICLR 2021

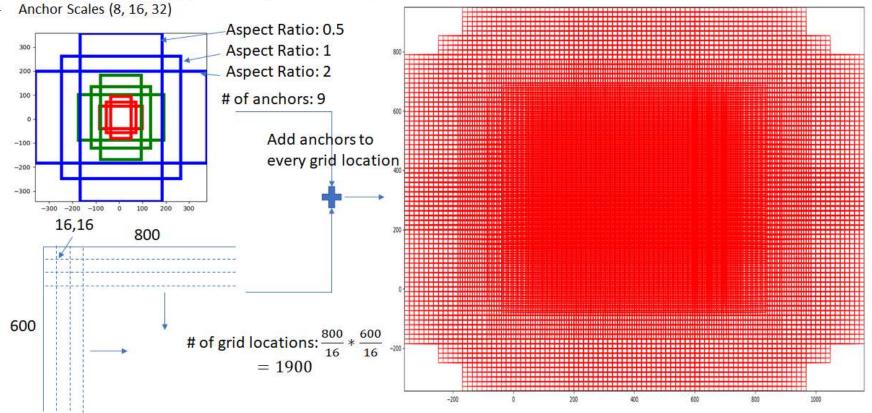
Generate Anchors

Given:

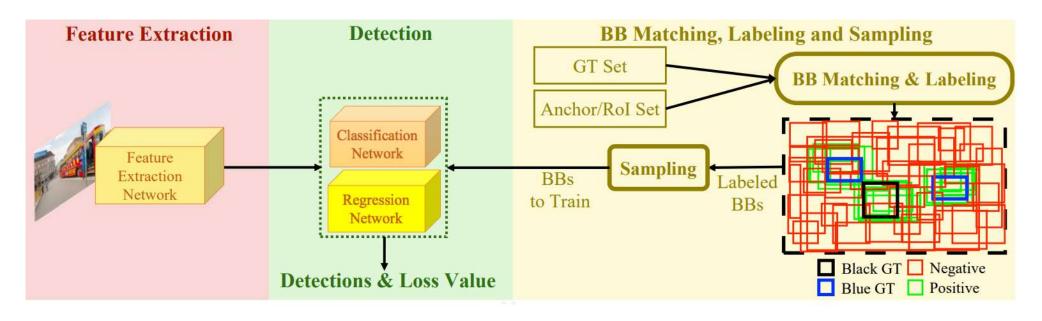
Set of aspect ratios (0.5, 1, 2)

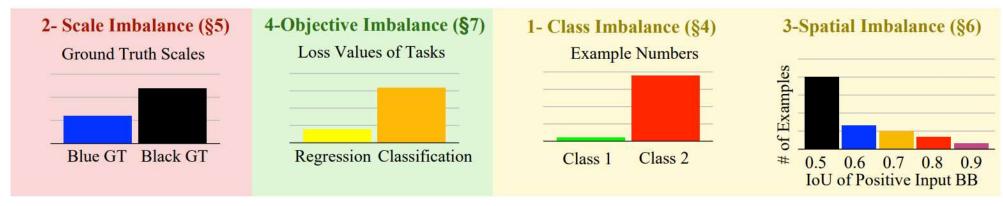
Stride length (downscaling performed by resnet head: 16)

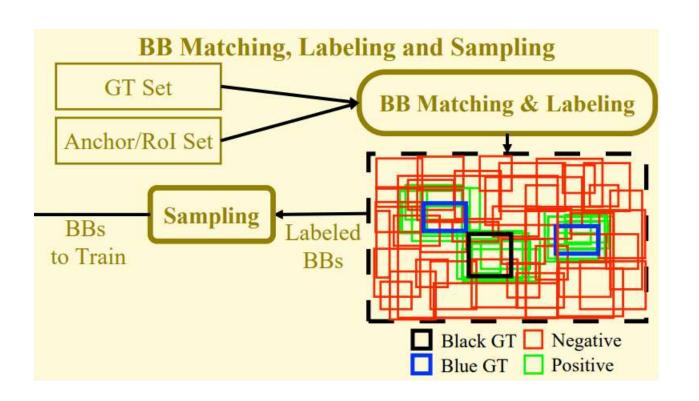
Total number of anchors: 1900*9 = 17100 Some boxes lie outside the image boundary



Create uniformly spaced grid with spacing = stride length







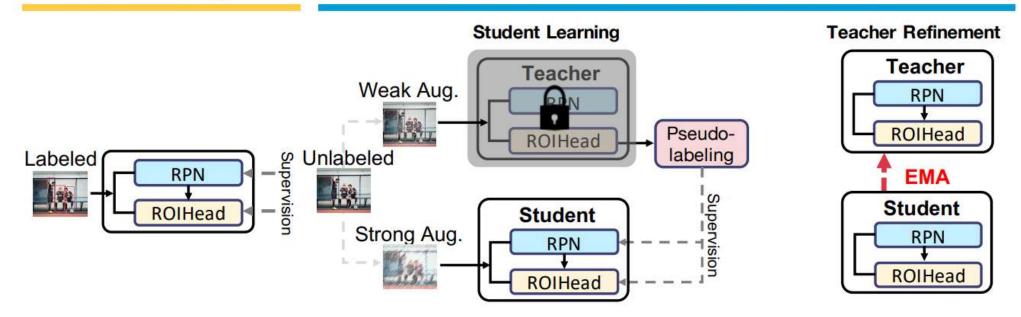
Pseudo-labeling Methods:

- Imbalance between background and foreground
- Imbalance between classes

Unbiased Teacher

Burn-In Stage

Teacher-Student Mutual Learning Stage

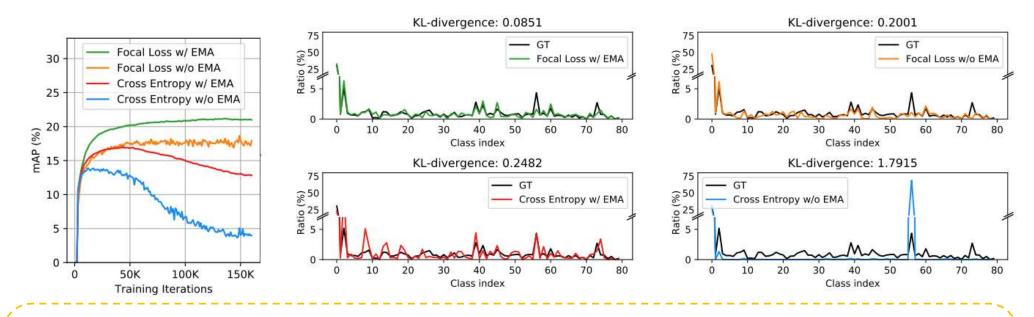


$$\text{Burn-in:} \quad \mathcal{L}_{sup} = \sum_{i} \mathcal{L}_{cls}^{rpn}(\boldsymbol{x}_{i}^{s}, \boldsymbol{y}_{i}^{s}) + \mathcal{L}_{reg}^{rpn}(\boldsymbol{x}_{i}^{s}, \boldsymbol{y}_{i}^{s}) + \mathcal{L}_{cls}^{roi}(\boldsymbol{x}_{i}^{s}, \boldsymbol{y}_{i}^{s}) + \left[\mathcal{L}_{reg}^{roi}(\boldsymbol{x}_{i}^{s}, \boldsymbol{y}_{i}^{s})\right]$$

Mutual Learning:
$$\mathcal{L}_{unsup} = \sum_{i} \mathcal{L}_{cls}^{rpn}(\boldsymbol{x}_{i}^{u}, \hat{\boldsymbol{y}}_{i}^{u}) + \left[\mathcal{L}_{cls}^{roi}(\boldsymbol{x}_{i}^{u}, \hat{\boldsymbol{y}}_{i}^{u})\right] \qquad \theta_{s} \leftarrow \theta_{s} + \gamma \frac{\partial(\mathcal{L}_{sup} + \boldsymbol{\lambda}_{u}\mathcal{L}_{unsup})}{\partial\theta_{s}}$$

Unbiased Teacher

KL-divergence between the ground-truth labels distribution and the pseudo-label distribution.

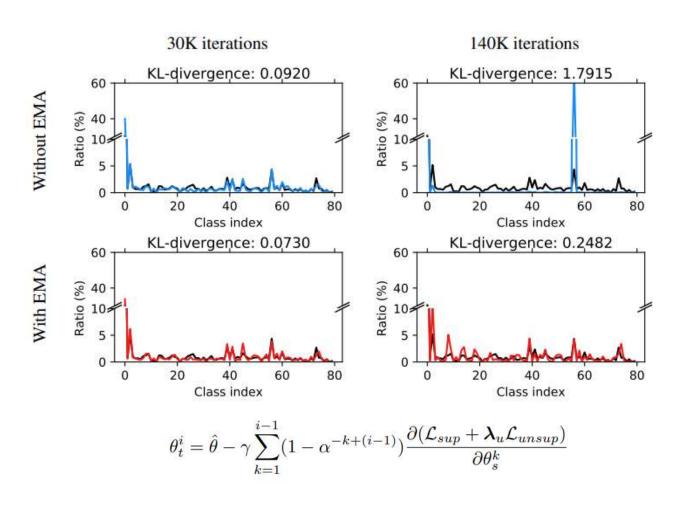


Focal loss:

$$FL(p_t) = -\alpha_t (1 - p_t)^{\gamma} \log(p_t)$$

- ① Mitigating Easy Samples: small weights to easy samples.
- ② Balancing Class Distribution: balance the weights of positive and negative samples by adjusting gamma.

EMA on Imbalanced Pseudo-labeling



End-to-End Semi-Supervised Object Detection with Soft Teacher

Mengde Xu^{1†*} Zheng Zhang^{1,2*‡} Han Hu^{2‡} Jianfeng Wang² Lijuan Wang² Fangyun Wei² Xiang Bai¹ Zicheng Liu²

¹Huazhong University of Science and Technology

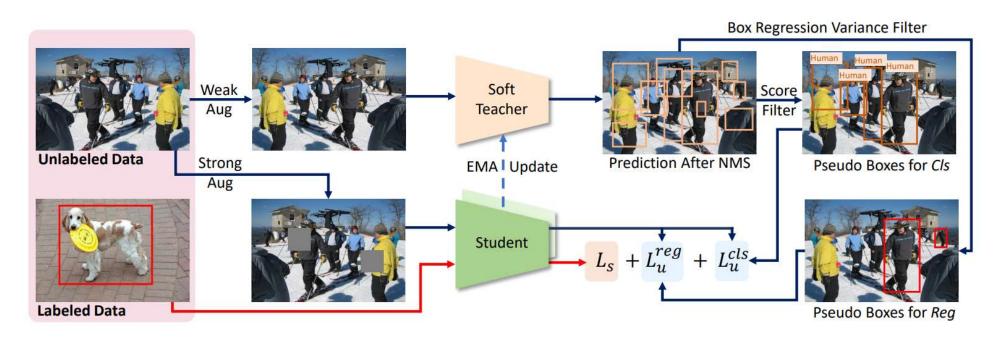
 $\{$ mdxu,xbai $\}$ @hust.edu.cn 2 Microsoft

{zhez, hanhu, jianfw, lijuanw, fawe, zliu}@microsoft.com

Two-stage

ICCV 2021

Soft Teacher



$$\mathcal{L}_{s} = \frac{1}{N_{l}} \sum_{i=1}^{N_{l}} (\mathcal{L}_{\text{cls}}(I_{l}^{i}) + \mathcal{L}_{\text{reg}}(I_{l}^{i}))$$

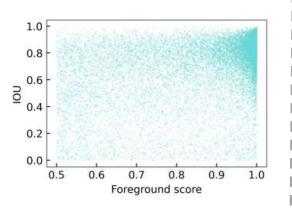
$$\mathcal{L}_{u}^{\text{cls}} = \frac{1}{N_{b}^{\text{fg}}} \sum_{i=1}^{N_{b}^{\text{fg}}} l_{\text{cls}}(b_{i}^{\text{fg}}, \mathcal{G}_{\text{cls}}) + \sum_{j=1}^{N_{b}^{\text{bg}}} w_{j} l_{\text{cls}}(b_{j}^{\text{bg}}, \mathcal{G}_{\text{cls}})$$

$$\mathcal{L}_{u} = \frac{1}{N_{u}} \sum_{i=1}^{N_{u}} (\mathcal{L}_{\text{cls}}(I_{u}^{i})) + \mathcal{L}_{\text{reg}}(I_{u}^{i}))$$

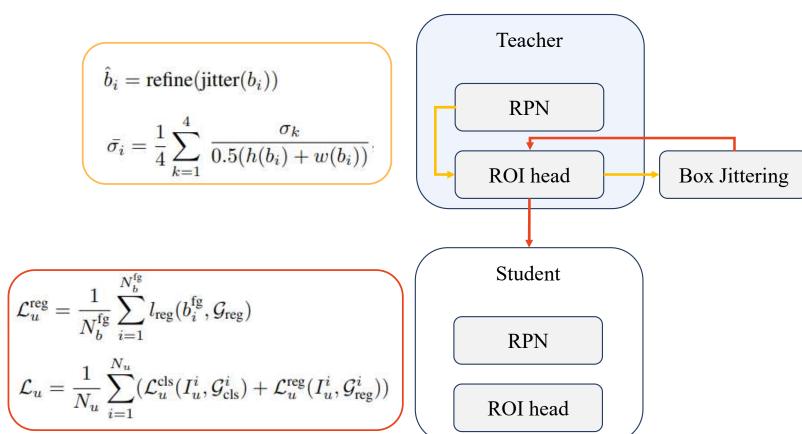
$$w_{j} = \frac{(r_{j}) \text{ reliability score}}{\sum_{k=1}^{N_{b}^{\text{bg}}} r_{k}}$$
pseudo boxes

(the background score produced by the teacher model)

Soft Teacher



Not strong positive correlation



Estimating the localization reliability of a candidate pseudo box by measuring the consistency of its regression prediction

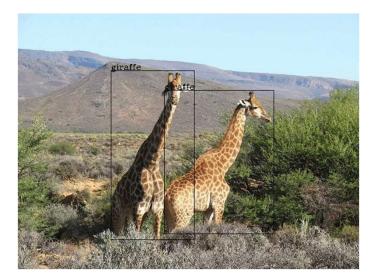
Consistent-Teacher: Towards Reducing Inconsistent Pseudo-targets in Semi-supervised Object Detection

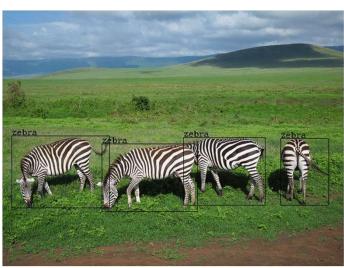
Xinjiang Wang^{1*} Xingyi Yang^{3*†} Shilong Zhang², Yijiang Li^{1‡} Litong Feng¹ Shijie Fang^{4‡} Chengqi Lyu² Kai Chen² Wayne Zhang¹

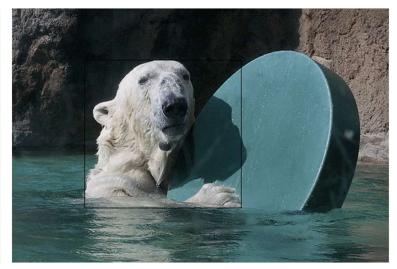
¹SenseTime Research ²Shanghai AI Laboratory ³National University of Singapore ⁴Peking University wangxinjiang@sensetime.com, xyang@u.nus.edu

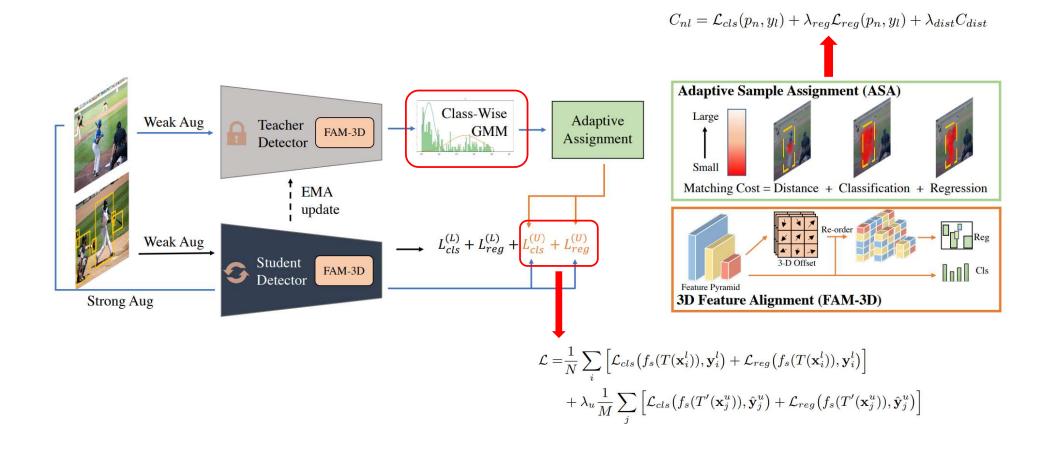
One-stage

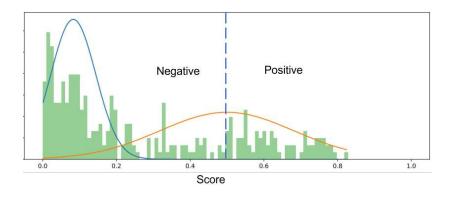
CVPR 2023



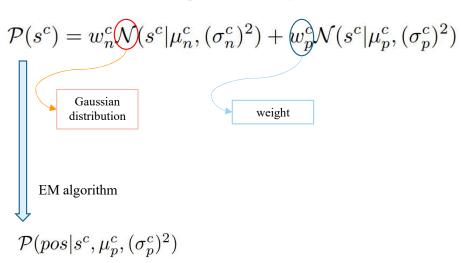






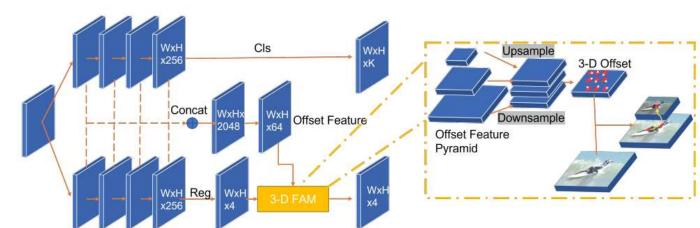


unlabeled data have two modalities: positive and negative



the probability that detection should be set as the pseudo-target for the student

$$\tau^c = \operatorname*{argmax}_{s^c} \mathcal{P}(pos|s^c, \mu_p^c, (\sigma_p^c)^2)$$



Adaptive Sample Assignment

$$\hat{c} = \operatorname*{argmin} \mathcal{L}(f_t(\mathbf{x}^u), c)$$

$$C_{ij} = \lambda_{cls}C_{cls} + \lambda_{reg}C_{reg} + \lambda_{dist}C_{dist}$$
 where $C_{cls} = L_{cls}(\operatorname{Pred}(p_i)_{cls}, b_i)$ $C_{reg} = L_{reg}(\operatorname{Pred}(p_i)_{reg}, b_i)$ $C_{dist}(i,j) = 10^{\|\mathbf{d}(p_j,b_i)\|_2}$

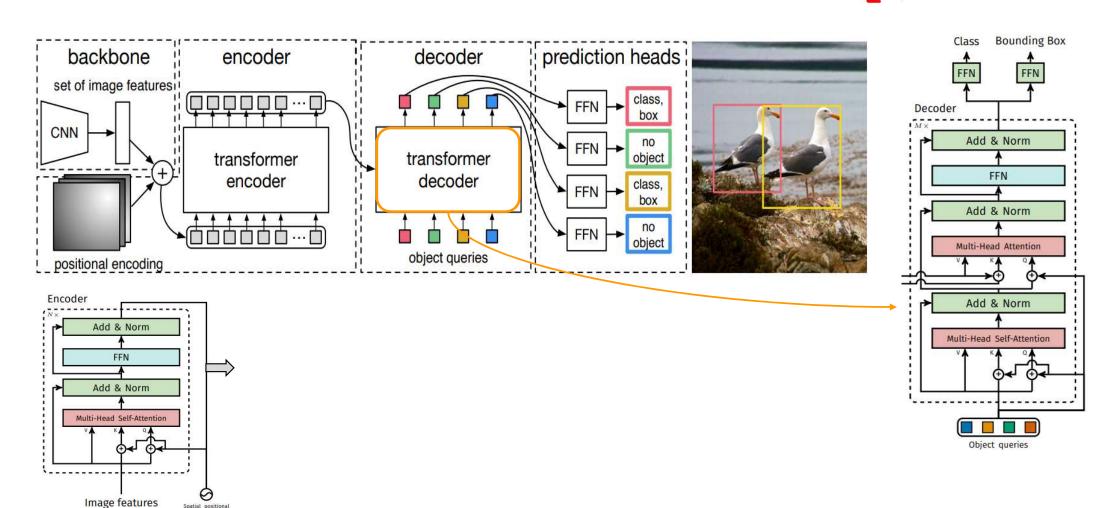
Semi-DETR: Semi-Supervised Object Detection with Detection Transformers

Xinjiang Wang^{1*} Xingyi Yang^{3*†} Shilong Zhang², Yijiang Li^{1‡} Litong Feng¹ Shijie Fang^{4‡} Chengqi Lyu² Kai Chen² Wayne Zhang¹

¹SenseTime Research ²Shanghai AI Laboratory ³National University of Singapore ⁴Peking University wangxinjiang@sensetime.com, xyang@u.nus.edu

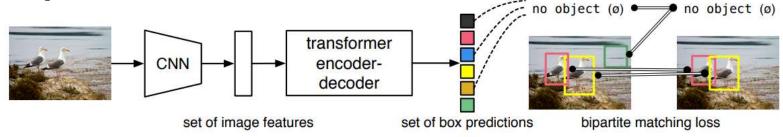
DETR

CVPR 2023



Carion N, Massa F, Synnaeve G, et al. End-to-end object detection with transformers[C]//European conference on computer vision. Cham: Springer International Publishing, 2020: 213-229.

Object detection set prediction loss



Search for a permutation of N elements with the lowest cost:

$$\hat{\sigma} = \operatorname*{arg\,min}_{\sigma \in \mathfrak{S}_N} \sum_{i}^{N} \mathcal{L}_{\mathrm{match}}(y_i, \hat{y}_{\sigma(i)})$$

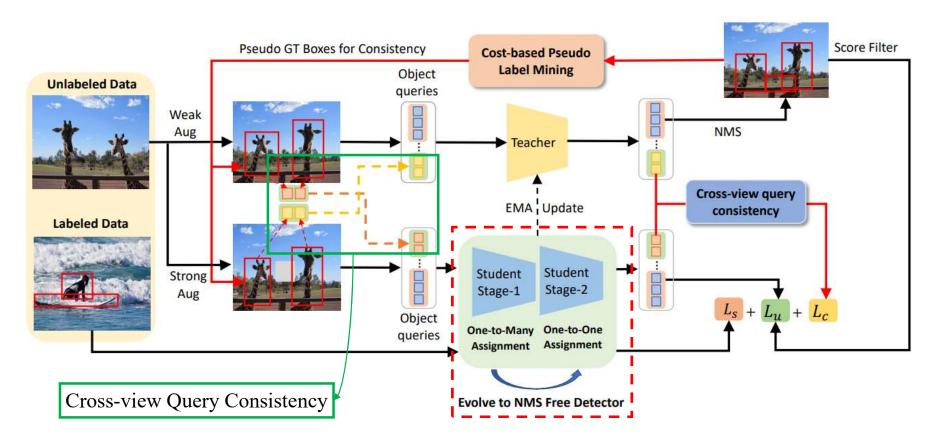
A pair-wise matching cost between gt and prediction:

$$\mathcal{L}_{\text{match}}(y_i, \hat{y}_{\sigma(i)}) = -\mathbb{1}_{\{c_i \neq \varnothing\}} \hat{p}_{\sigma(i)}(c_i) + \mathbb{1}_{\{c_i \neq \varnothing\}} \mathcal{L}_{\text{box}}(b_i, \hat{b}_{\sigma(i)})$$

Find one-to-one matching for direct set prediction without duplicates (Hungarian loss):

$$\mathcal{L}_{\text{Hungarian}}(y, \hat{y}) = \sum_{i=1}^{N} \left[-\log \hat{p}_{\hat{\sigma}(i)}(c_i) + \mathbb{1}_{\{c_i \neq \varnothing\}} \mathcal{L}_{\text{box}}(b_i, \hat{b}_{\hat{\sigma}}(i)) \right]$$

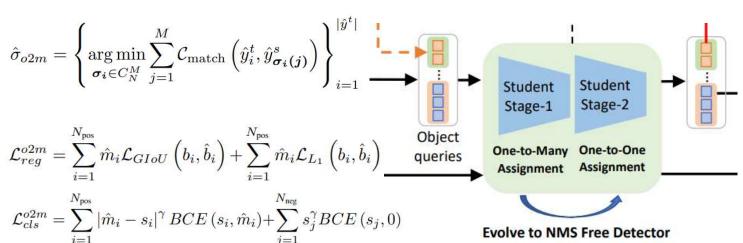
$$C_{ij} = \lambda_1 C_{Cls}(p_i, \hat{p_j}) + \lambda_2 C_{GIoU}(b_i, \hat{b_j}) + \lambda_3 C_{L_1}(b_i, \hat{b_j})$$



Semi-DETR

One-to-many assignment:

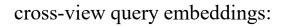
 $\mathcal{L}^{o2m} = \mathcal{L}_{cls}^{o2m} + \mathcal{L}_{reg}^{o2m}$



One-to-one assignment:

$$\hat{\sigma}_{o2o} = \operatorname*{arg\,min}_{\sigma \in \xi_N} \sum_{i=1}^{N} \mathcal{C}_{\mathrm{match}} \left(\hat{y}_i^t, \hat{y}_{\sigma(i)}^s \right)$$

Semi-DETR



$$c_t = \text{MLP}(\text{RoIAlign}(F_t, b))$$

 $c_s = \text{MLP}(\text{RoIAlign}(F_s, b))$

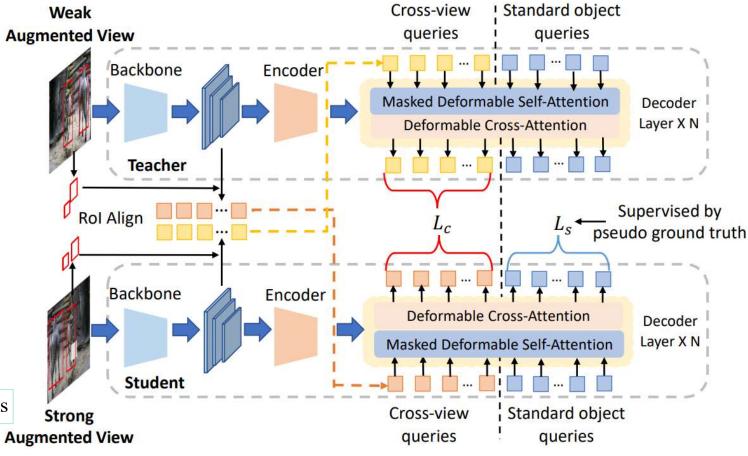
decoded features of standard (cross-view) queries

original object queries

$$\hat{o}_t, o_t = \text{Decoder}_t([c_s, q_t], E_t | A)$$

$$\hat{o}_s, o_s = \text{Decoder}_s([c_t, q_s], E_s | A)$$

encoded image features



consistency loss: $\mathcal{L}_c = \text{MSE}(\hat{o}_s, \text{detach}(\hat{o}_t))$

Mixed Pseudo Labels for Semi-Supervised Object Detection

Zeming Chen^{1*} Wenwei Zhang^{2,4} Xinjiang Wang³ Kai Chen⁴ Zhi Wang¹

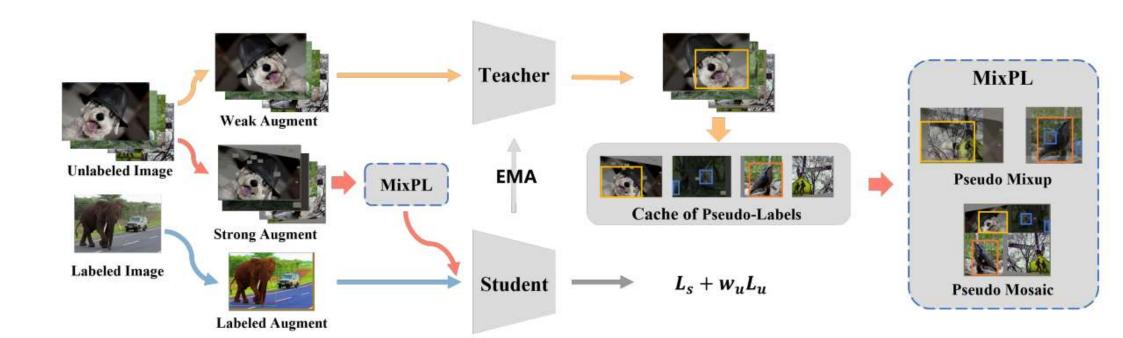
¹Shenzhen International Graduate School, Tsinghua University

²S-Lab, Nanyang Technological University ³SenseTime Research ⁴Shanghai AI Laboratory

czm20@mails.tsinghua.edu.cn wenwei001@ntu.edu.sg wangxinjiang@sensetime.com chenkai@pjlab.org.cn wangzhi@sz.tsinghua.edu.cn

DETR

Arxiv 2023.12.12



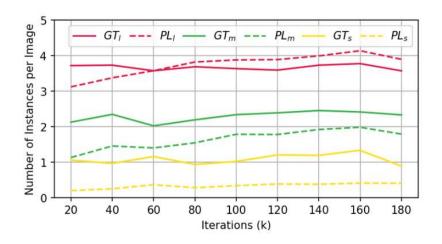
MixPL

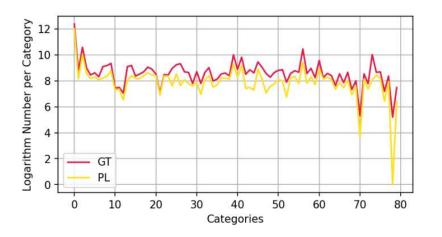
Why mosaic?

Imbalance: Scal

Large obj -> Medium obj Medium obj -> Small obj

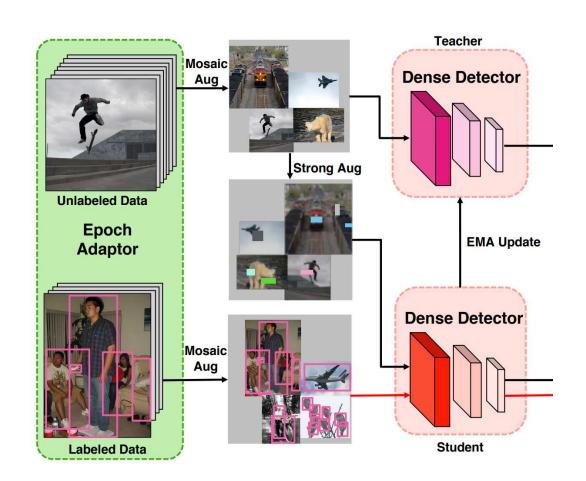
Labeled Resampling:
Oversampling of tail categories





Efficient Teacher (CVPR 2023)

Method	Resolution	Mosaic	Param.	FLOPs	$AP_{50:95}(\%)$
Faster R-CNN [24]	[1333,800]		39.8M	202.31G	40.3
FCOS [31]	[1333,800]		32.02M	200.59G	38.5
YOLOv5 w/o	[640,640]		46.56M	109.59G	41.2
YOLOv5 [14]	[640,640]	√	46.56M	109.59G	49.0
YOLOv7 [33]	[640,640]	\checkmark	37.62M	106.59G	51.5
RetinaNet [19]	[1333,800]		37.74M	239.32G	39.5
Dense Detector	[640,640]	✓	42.13M	169.61G	44.86



Why mixup?

Detector	Filter	AP	AP ₅₀	AP_{75}	AP_s	AP_m	AP_l
Faster R-CNN	×	34.7 34.7	54.6 54.7	37.6 37.4	19.5 19.3	37.1 37.6	46.1 45.8
RetinaNet	×	17.9 34.1	29.0 52.7	18.8 36.0	8.1 18.1	21.7 36.8	29.6 46.2

Effectiveness of filtering empty images.

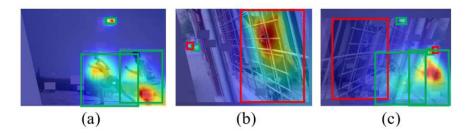


Figure 4. Grad-CAM of different augmented images with pseudo-labels for Faster R-CNN on COCO 10%. (c) is the Pseudo Mixup image of (a) and (b). The green boxes indicate correct pseudo-labels and the red boxes indicate missed objects. Pseudo Mixup is effective in reducing the gradient response of missed objects and enhancing the gradient response of correct pseudo-labels.

Method	10% COCO
Labeled Only	23.86
CSD	22.46
STAC	28.64
Instant Teaching	30.40
Humble teacher	31.61
Unbiased Teacher	31.50
Soft Teacher	34.04
ACRST	34.92
PseCo	36.06
Labeled Only	24.10
Unbiased Teacher v2	32.61
DSL	36.22
Dense Teacher	37.13
S4OD	32.90
Mean-Teacher	35.50
Consistent-Teacher	40.00

Detectors	Supervised	DetMeanTeacher	MixPL
RetinaNet	27.2	34.1 (+6.9)	36.0 (+1.9)
CenterNet	27.7	34.9 (+7.2)	36.7 (+1.8)
FCOS	26.9	35.9 (+9.0)	37.3 (+1.4)
ATSS	28.2	35.5 (+7.3)	37.0 (+1.5)
TOOD	29.5	38.2 (+8.7)	38.9 (+0.7)
Faster R-CNN	26.6	34.7 (+8.1)	37.2 (+2.5)
Cascade R-CNN	28.0	37.3 (+9.3)	40.0 (+2.7)
Sparse R-CNN	29.3	36.8 (+7.5)	38.2 (+1.4)
Deformable DETR	31.3	39.3 (+8.0)	40.5 (+1.2)
DAB DETR	27.5	33.7 (+6.2)	36.2 (+2.5)
DINO	35.7	43.2 (+7.5)	44.4 (+1.2)

Table 9. Improvements on various detectors on COCO 10%.

Conclusion

- 1. Unbiased Teacher constructed the basic framework of SSOD based on teacher-student.
- 2. Soft-teacher, building on Unbiased Teacher, established the paradigm of two-stage SSOD.
- 3. Consistent Teacher and Efficient Teacher were the first to apply one-stage methods in SSOD, addressing the challenge of obtaining high-quality pseudo-labels directly from dense predictions.
- 4. Semi-DETR was the first to incorporate DETR-based approaches into SSOD, with DETR-based frameworks being well-suited for solving SSOD problems.

Foreground-background imbalance: Focal loss, Mosaic aug, Mixup aug ...

Pseudo Label Inconsistency:

EMA(Unbiased teacher), FAM3D(consistent teacher), Box Jettering(soft teacher), Dense Detector(efficient teacher), Cross-view query consistency method(Semi-DETR) ...

Assignment: adaptive anchor assignment(consistent teacher) ...

Conclusion

Performance: DETR > Two-stage > One-stage

Training Cost: DETR > > Two-stage > One-stage

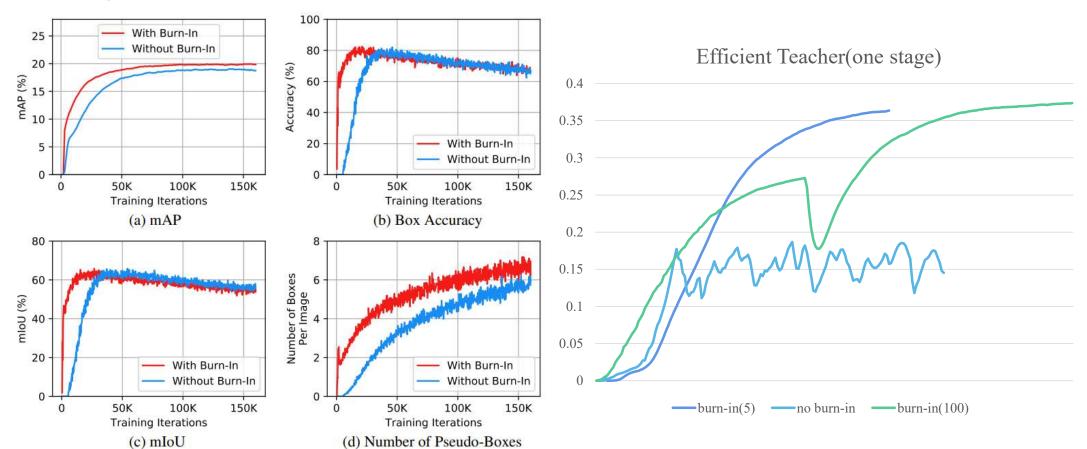
Speed: One-stage > Two-stage > DETR

Flexibility: Two-stage > DETR ≈ One-stage

Conclusion

Parnel 模式识别与神经计算研究组 PAttern Recognition and NEural Computing

Burn-in stage



Unbiased Teacher (two stage)