

CDUL: CLIP-Driven Unsupervised Learning for Multi-Label Image Classification

Rabab Abdelfattah¹, Qing Guo², Xiaoguang Li³, Xiaofeng Wang³, and Song Wang³

¹University of Southern Mississippi, USA
rabab.abdelfattah@usm.edu

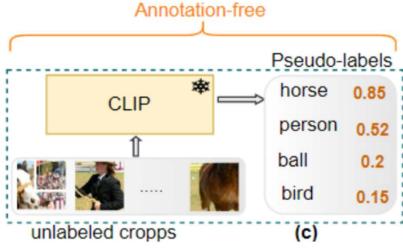
²IHPC and CFAR, Agency for Science, Technology and Research, Singapore
tsingqguo@ieee.org

³University of South Carolina, USA
x122@email.sc.edu, {wangxi, songwang}@cec.sc.edu

ICCV 2023

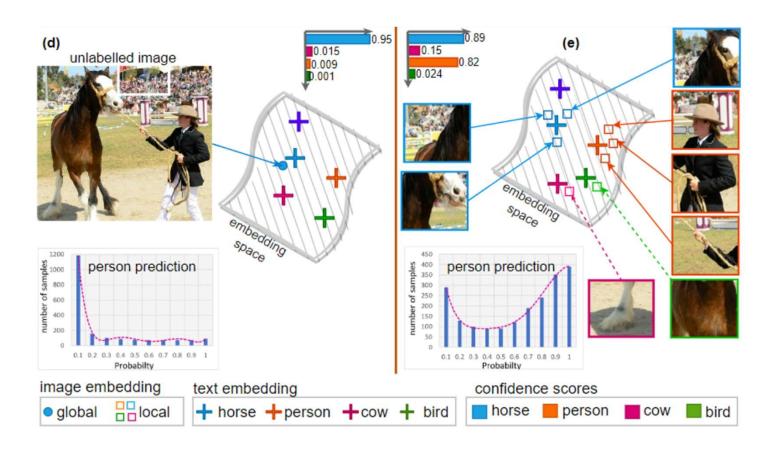
1 Overview

- A multi-label classification task aims to predict all the objects within the input image.
- However, getting clean and complete multi-label annotations is very challenging and not scalable,
 especially for large-scale datasets, because an image usually contains multiple labels.
- To alleviate the annotation burden, weakly supervised learning approaches have been studied
 which only a limited number of objects are labeled on a subset of training images which it still
 requires intensive manpower and time for annotations.
- To go one step further, we consider unsupervised multi-label image classification, leveraging the off-the-shelf vision-language models such as contrastive language-image pretraining (CLIP).

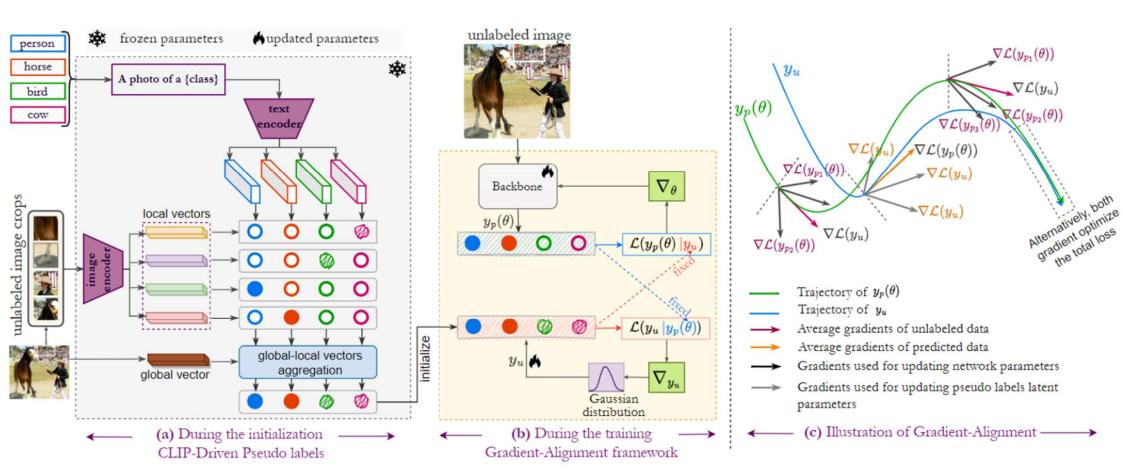


2 Motivation

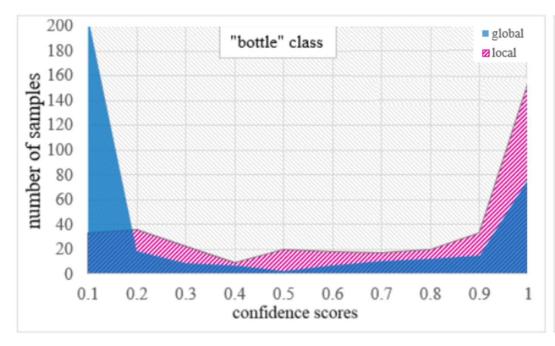
CLIP is not suitable for multi-label classification, since it is trained only for recognizing a single object per image.

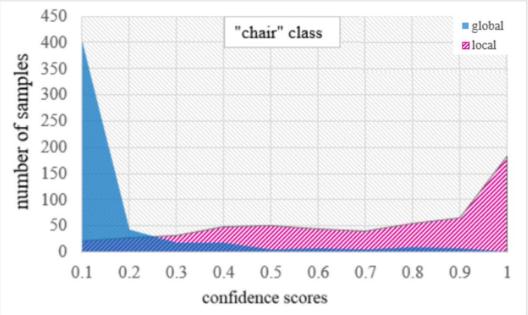


3 Proposed Model



3 Proposed Model



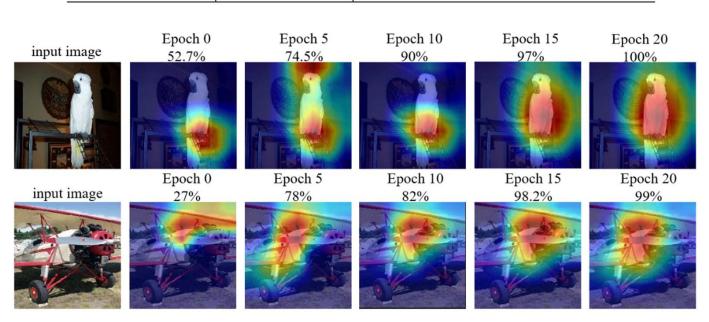


4 Experiments

Quality of pseudo labels on the training set in three different datasets using ResNet-50 x 64

Datasets	global alignment	global-local alignment			
		Aggregator			
		avg	max	ours	
VOC 2012	85.3	88.5	89.5	90.3	
COCO	65.4	70.0	71.6	72.8	
NUS	41.2	41.8	42.3	43.1	

CAM visualization for the classification task on VOC2012 dataset. CAM shows that the improvement of the classification during the epoch.



4 Experiments

Mean average precision mAP in (%) for different multi-label classification methods under different supervision levels: Fully supervised, Weakly supervised and unsupervised, in addition to compare to zero-shot CLIP for four different datasets.

Supervision level	Annotation	Method	VOC2012	VOC2007	COCO	NUS
Fully Supervised	Fully labeled	BCE-LS [12]	91.6	92.6	79.4	51.7
		BCE	90.1	91.3	78.5	50.7
Weakly Supervised	10% labeled	SARB <i>et al.</i> [30]	-	85.7	72.5	-
		ASL et al.[3]	-	82.9	69.7	-
		Chen et al.[7]	-	81.5	68.1	-
	one observed labeled	LL-R [24]	89.7	90.6	72.6	47.4
		G^2 NetPL [1]	89.5	89.9	72.5	48.5
Unsupervised	Annotation-free	Naive AN [25]	85.5	86.5	65.1	40.8
		Szegedy et al. [35]	86.8	87.9	65.5	41.3
		Aodha et al.[28]	84.2	86.2	63.9	40.1
		Durand et al.[15]	81.3	83.1	63.2	39.4
		ROLE [12]	82.6	84.6	67.1	43.2
		CDUL (ours)	88.6	89.0	69.2	44.0

5 Conclusion

- To the best of our knowledge, this is the first work that applies CLIP for unsupervised multi-label image classification.
- Our key innovation is to modify the vision-language pre-train model to the soft pseudo labels, which can help training the classification network.
- The aggregation of global and local alignments generated by CLIP can effectively reflect the multi-label nature of an image, which breaks the impression that CLIP can only be used in single-label classification.



THANKS