

LLM-AutoDA: Large Language Model-Driven Automatic Data Augmentation for Long-tailed Problems

Pengkun Wang^{1,2}*, Zhe Zhao^{1,3}* Haibin Wen⁵, Fanfu Wang⁶, Binwu Wang¹, Qingfu Zhang³[†], Yang Wang^{1,2†} ¹University of Science and Technology of China (USTC), Hefei, China ²Suzhou Institute for Advanced Research, USTC, Suzhou, China ³City University of Hong Kong, Hong Kong, China ⁵MorongAI, Suzhou, China ⁶Lanzhou University, Lanzhou, China {pengkun@ustc.edu.cn, zz4543@mail.ustc.edu.cn, haibin65535@gmail.com, wangff21@lzu.edu.cn, wbw2024@ustc.edu.cn, qingfu.zhang@cityu.edu.hk, angyan@ustc.edu.cn}

NIPS 2024

Introduction

Different long-tailed data augmentation paradigms

- (i) based on manually designed human knowledge and experience
- (ii) the search space of these strategies is often limited
- (iii) lack flexibility, can not adapt to changes in the data distribution during the training process

Introduction

南京航空航天大學 Nanjing University of Aeronautics and Astronauti

LLM × LTL: Can LLMs Provide DA Strategies for Long-tailed Learning?

Figure 2: Strategy generation paradigm of SimpleLLM.

Figure 4: Average accuracy (%) on CIFAR-100-LT dataset (Imbalance ratio=100) with CUDA and DODA. SimpleLLM is comparable to the effectiveness of CUDA and DODA when combined with long-tailed learning baselines.

Method

Figure 3: Overview of LLM-AutoDA. LLM-AutoDA leverages large-scale pretrained models to automatically search for the optimal augmentation strategies suitable for long-tailed data distributions.

Method

Algorithm 1: LLM-AutoDA: Automatic Data Augmentation with Language Models

1: Input:

- 2: Long-tailed datasets $\mathcal{D}_{train}, \mathcal{D}_{val}$
- 3: Pretrained language model L
- 4: Initial data augmentation policies K
- 5: Long-tailed learning model f_{θ} with parameters θ

6: Output:

- 7: Optimal data augmentation algorithm \mathcal{A}^*
- 8: Final model f_{θ}
- 9: Define task description prompt \mathcal{P}_{task}
- 10: Define exploration operator prompt template \mathcal{P}_E
- 11: Define mutation operator prompt template \mathcal{P}_M

12: Initialize algorithm population
$$\{\mathcal{A}_i^{(0)}\}_{i=1}^N = \text{INITIALIZE}(\mathcal{L}, \mathcal{P}_{task}, \mathcal{K})$$

13: for each generation t do

 $\{\mathcal{A}_i^{(t)}\}_{i=1}^{N_p} = \text{SELECT}(\{\mathcal{A}_i^{(t-1)}\}_{i=1}^N) \{\text{Select parents}\}$ 14:

- $\{\mathcal{A}_{i}^{(t)}\}_{i=1}^{N_{e}} = \text{EXPLORE}(\mathcal{L}, \mathcal{P}_{E}, \{\mathcal{A}_{i}^{(t)}\}_{i=1}^{N_{p}}, \mathcal{K}) \{\text{Explore}\}$ 15:
- $\{\hat{\mathcal{A}}_{i}^{(t)}\}_{i=1}^{N_{m}} = \text{MUTATE}(\mathcal{L}, \mathcal{P}_{M}, \{\mathcal{A}_{i}^{(t)}\}_{i=1}^{N_{m}}, \mathcal{K}) \{\text{Mutate}\}$ 16:
- $\{\mathcal{A}_{i}^{(t)}\}_{i=1}^{N} = \{\mathcal{A}_{i}^{(t)}\}_{i=1}^{N_{p}} \cup \{\mathcal{A}_{j}^{(t)}\}_{j=1}^{N_{e}} \cup \{\hat{\mathcal{A}}_{i}^{(t)}\}_{i=1}^{N_{m}}$ 17:
- 18:
- for each $\mathcal{A}_{i}^{(t)}$ do $fitness_{i}^{(t)} = \text{EVALUATE}(\mathcal{A}_{i}^{(t)}, f_{\theta}, \mathcal{D}_{train}, \mathcal{D}_{val}, e_{ckp}, N_{ft})$ 19:
- end for 20:
- 21: end for
- 22: $\mathcal{A}^* =_{\mathcal{A}_i} fitness_i$ {Select algorithm with highest fitness}
- 23: return $\mathcal{A}^*, f_{\theta}$
 - =0

function EVALUATE($\mathcal{A}, f_{\theta}, \mathcal{D}_{train}, \mathcal{D}_{val}, e_{ckp}, N_{ft}$): $f'_{\theta} = \text{FINETUNE}(\hat{\mathcal{A}}, f_{\theta}, \mathcal{D}_{train}, e_{ckp}, N_{ft})$ return ACCURACY $(f'_{\theta}, \mathcal{D}_{val}) = 0$

function FINETUNE($\mathcal{A}, f_{\theta}, \mathcal{D}_{train}, e_{ckp}, N_{ft}$): Load checkpoint of f_{θ} at epoch e_{ckp} for $e = e_{ckp}$ to $e_{ckp} + N_{ft}$ do for each class c do $\mathcal{A}_{c}^{(e)}, \mathcal{E}_{c}^{(e)} = \mathcal{A}(\mathbf{W}_{c}^{(e-1)}, \mathbf{H}_{c}^{(e-1)}, acc_{c}^{(e-1)}, \mathcal{A}_{c}^{(e-1)}, \mathcal{E}_{c}^{(e-1)}, e)$ end for Train f_{θ} for one epoch on \mathcal{D}_{train} using $\{\mathcal{A}_{c}^{(e)}, \mathcal{E}_{c}^{(e)}\}$ for augmentation end for return $f_{\theta} = 0$

Method

Strategy Evaluation

Injecting candidate algorithms into the real training process and evaluating them on the validation set.

 $Fitness(f_{aug}) = Acc_{val}(Finetune(f_{aug}, \mathcal{D}_{train}, e_{ckp}, N_{ft}), \mathcal{D}_{val})$

function EVALUATE($\mathcal{A}, f_{\theta}, \mathcal{D}_{train}, \mathcal{D}_{val}, e_{ckp}, N_{ft}$): $f'_{\theta} = \text{FINETUNE}(\mathcal{A}, f_{\theta}, \mathcal{D}_{train}, e_{ckp}, N_{ft})$ return ACCURACY($f'_{\theta}, \mathcal{D}_{val}$) =0

function FINETUNE($\mathcal{A}, f_{\theta}, \mathcal{D}_{train}, e_{ckp}, N_{ft}$): Load checkpoint of f_{θ} at epoch e_{ckp} for $e = e_{ckp}$ to $e_{ckp} + N_{ft}$ do for each class c do $\mathcal{A}_{c}^{(e)}, \mathcal{E}_{c}^{(e)} = \mathcal{A}(\mathbf{W}_{c}^{(e-1)}, \mathbf{H}_{c}^{(e-1)}, acc_{c}^{(e-1)}, \mathcal{A}_{c}^{(e-1)}, \mathcal{E}_{c}^{(e-1)}, e)$ end for Train f_{θ} for one epoch on \mathcal{D}_{train} using $\{\mathcal{A}_{c}^{(e)}, \mathcal{E}_{c}^{(e)}\}$ for augmentation end for return $f_{\theta} = 0$

LLM-based Search Operator

Initialization operator I: Based on the task description prompt *P*_{task} and the knowledge base of data augmentation *K*.

Crossover operator *E*: Building upon P_{task} , N_p parent algorithms $A_i^{(t)}i = 1^{N_p}$ from the current population are used as references, along with the incorporation of knowledge base *K*.

Mutation operator *M*: Based on *P*_{task}, *Nm* individuals $A_{i}^{(t)}{}^{N_m}_{i=1}$ are selected from the current population, and local improvement directions are provided.

The prompt P_E of the crossover operator E can be represented as follows:

$$P_{E}(P_{task}, \{A_{i}^{(t)}\}_{i=1}^{N_{p}}, \mathcal{K}, D_{func}) = P_{task} + P_{ref}(\{A_{i}^{(t)}\}_{i=1}^{N_{p}}) + P_{know}(\mathcal{K}) + P_{diff} + P_{format}(D_{func})$$
$$\{A_{j}^{(t)}\}_{j=1}^{N_{e}} = \mathcal{L}(P_{E}(P_{task}, \{A_{i}^{(t)}\}_{i=1}^{N_{p}}, \mathcal{K}, D_{func}))$$

Experiments

Table 1: Accuracy (%) on CIFAR-100-LT dataset (Imbalance ratio= $\{50, 100\}$) with SOTA DA methods. **Blod** indicates the best performance while <u>underline</u> indicates the second best. (+) and (-) indicate the relative gain.

Method	IR = 50				IR = 100			
	Head	Medium	Tail	All	Head	Medium	Tail	All
CE [15]	63.9	36.2	15.2	43.8 (+0.0)	65.6	36.2	8.2	40.1 (+0.0)
CE + CUDA	68.3	38.4	13.7	46.2 (+2.4)	70.7	41.4	9.3	42.0 (+3.9)
CE + DODA	71.2	40.3	12.6	48.0 (+4.2)	74.8	43.8	10.0	44.5 (+6.4)
CE + SimpleLLM	71.4	39.9	13.1	48.0 (+4.2)	72.5	44.9	9.8	44.0 (+5.9)
CE + LLM-AutoDA	72.3	40.0	14.1	48.6 (+4.8)	74.9	45.3	9.6	45.0 (+6.9)
CE-DRW [5]	60.6	39.0	22.9	45.0 (+0.0)	63.4	41.2	15.7	41.4 (+0.0)
CE-DRW + CUDA	63.8	48.0	37.0	52.5 (+7.5)	63.5	48.9	25.3	46.9 (+5.5)
CE-DRW + DODA	63.4	47.4	38.9	52.5 (+7.5)	60.2	51.9	29.6	48.1 (+6.7)
CE-DRW + SimpleLLM	62.3	49.4	38.8	52.7 (+7.7)	62.1	49.6	27.9	47.5 (+6.1)
CE-DRW + LLM-AutoDA	63.1	48.4	39.3	52.8 (+7.8)	62.9	50.7	29.9	48.7 (+7.3)
LDAM-DRW [5]	63.0	41.2	25.1	47.2 (+0.0)	62.8	42.6	21.1	43.2 (+0.0)
LDAM-DRW + CUDA	66.2	46.2	26.4	50.8 (+3.6)	66.0	49.5	22.1	47.1 (+3.9)
LDAM-DRW + DODA	64.7	46.3	27.5	50.5 (+3.3)	65.4	50.8	25.5	48.3 (+5.1)
LDAM-DRW + SimpleLLM	65.1	45.2	27.3	50.1 (+2.9)	65.7	49.4	23.9	47.5 (+4.3)
LDAM-DRW + LLM-AutoDA	66.7	46.1	27.4	51.2 (+4.0)	66.7	50.1	26.3	48.8 (+5.6)
BS [33]	60.3	41.3	34.3	47.9 (+0.0)	59.6	42.3	23.7	42.8 (+0.0)
BS + CUDA	63.6	48.4	37.3	52.7 (+4.8)	62.5	49.1	29.4	47.9 (+5.1)
BS + DODA	62.2	51.2	41.5	54.0 (+6.1)	63.1	49.3	31.2	48.7 (+5.9)
BS + SimpleLLM	62.4	48.8	37.7	52.4 (+4.5)	62.4	48.8	30.6	48.1 (+5.3)
BS + LLM-AutoDA	63.3	<u>50.5</u>	40.2	53.9 (+6.0)	63.3	50.0	31.0	49.0 (+6.2)
RIDE [43]	65.7	47.7	31.8	52.2 (+0.0)	65.7	48.6	25.0	47.5 (+0.0)
RIDE + CUDA	67.8	47.0	33.4	53.1 (+0.9)	67.9	51.2	27.6	50.0 (+2.5)
RIDE + DODA	68.2	46.1	29.3	52.1 (-0.1)	68.7	50.9	25.7	49.6 (+2.1)
RIDE + SimpleLLM	67.3	46.8	30.8	52.3 (+0.1)	69.3	48.8	25.4	49.0 (+1.5)
RIDE + LLM-AutoDA	67.1	47.3	32.7	52.8 (+0.6)	69.1	50.2	28.1	50.2 (+2.7)
BCL [48]	61.6	43.1	34.3	49.1 (+0.0)	63.1	42.9	23.9	44.2 (+0.0)
BCL + CUDA	64.0	47.4	39.4	52.7 (+3.6)	64.7	49.7	29.1	48.8 (+4.6)
BCL + DODA	64.9	48.0	40.6	53.6 (+4.5)	66.0	50.7	33.8	51.0 (+6.8)
BCL + SimpleLLM	65.0	49.2	39.9	54.0 (+4.9)	64.1	50.4	30.1	49.0 (+4.8)
BCL + LLM-AutoDA	64.9	49.2	44.1	54.8 (+5.7)	66.6	50.6	33.1	51.0 (+6.8)

Experiments

Table 2: Accuracy (%) on ImageNet-LT and iNaturalist 2018 datasets with SOTA DA methods. **Blod** indicates the best performance while <u>underline</u> indicates the second best. (+) and (-) indicate the relative gain.

Method	ImageNet-LT				iNaturalist 2018			
	Head	Medium	Tail	All	Head	Medium	Tail	All
CE [15]	64.0	33.8	5.8	41.6 (+0.0)	73.9	63.5	55.5	61.0 (+0.0)
CE + CUDA	67.1	47.1	13.4	47.2 (+5.6)	74.6	65.0	57.2	62.5 (+1.5)
CE + DODA	67.4	47.5	13.9	48.1 (+6.5)	74.9	66.0	58.4	63.6 (+2.6)
CE + LLM-AutoDA	68.2	47.1	14.3	50.4 (+8.8)	75.1	66.3	58.9	64.0 (+3.0)
CE-DRW [5]	61.7	47.3	28.8	50.1 (+0.0)	68.2	67.3	66.4	67.0 (+0.0)
CE-DRW + CUDA	61.7	48.4	30.5	51.1 (+1.0)	68.8	67.9	66.5	67.4 (+0.4)
CE-DRW + DODA	62.4	48.5	31.3	52.2 (+2.1)	69.0	68.2	67.8	68.2 (+1.2)
CE-DRW + LLM-AutoDA	62.8	48.3	31.7	51.6 (+1.5)	68.8	68.8	68.1	68.7 (+1.7)
LDAM-DRW [5]	60.4	46.9	30.7	49.8 (+0.0)				66.1 (+0.0)
LDAM-DRW + CUDA	63.2	48.2	31.2	51.5 (+1.7)	68.0	67.5	66.8	67.3 (+1.2)
LDAM-DRW + DODA	63.7	48.6	31.9	52.4 (+2.6)	68.6	68.1	67.9	68.7 (+2.6)
LDAM-DRW + LLM-AutoDA	63.3	49.4	32.4	52.5 (+2.7)	68.0	69.4	68.6	69.5 (+3.4)
BS [33]	60.9	48.8	32.1	51.0 (+0.0)	65.7	67.4	67.5	67.3 (+0.0)
BS + CUDA	61.8	49.1	31.8	51.5 (+0.5)	67.6	68.2	68.3	68.2 (+0.9)
BS + DODA	61.9	49.5	32.4	52.0 (+1.0)	68.1	68.9	69.5	69.4 (+2.1)
BS + LLM-AutoDA	62.5	50.0	32.8	52.5 (+1.5)	68.0	69.1	69.9	69.8 (+2.5)
RIDE [43]	64.9	50.4	34.4	53.6 (+0.0)	70.4	71.8	71.8	71.6 (+0.0)
RIDE + CUDA	66.0	51.7	34.7	54.7 (+1.1)	70.6	72.6	72.7	72.4 (+1.4)
RIDE + DODA	66.6	51.9	35.9	55.8 (+2.2)	70.9	72.4	73.9	73.7 (+2.8)
RIDE + LLM-AutoDA	67.1	52.3	37.3	56.5 (+2.9)	70.9	72.8	73.8	73.9 (+3.0)
BCL [48]	65.3	53.5	36.3	55.6 (+0.0)	69.4	72.4	71.8	71.8 (+0.0)
BCL + CUDA	66.8	53.9	36.6	56.3 (+0.7)	70.8	72.7	72.0	72.2 (+0.4)
BCL + DODA	66.9	54.1	37.4	56.9 (+1.3)	71.2	73.2	73.4	73.7 (+1.9)
BCL + LLM-AutoDA	67.2	55.1	38.3	57.5 (+1.9)	70.9	73.6	74.7	74.2 (+2.4)

Experiments

Figure 5: Impact of different LLMs on Figure 6: Impact of differ- Figure 7: Impact of differthe performance of long-tailed learn- ent population numbers in the ent population numbers in the ing models.

mutation prompts.

crossover prompts.

Figure 8: Visualization of the process of finding the optimal solution for different augmentation paradigms.

Thanks