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Long-tail Problems

A feature space learned on these sampled is
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often larger than tail classes.
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The label distribution of a long-tailed dataset
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Introduction

Introducing Reflective Learning (RL):

In the human classroom,top students habitually review studied knowledge post-class, summarize
the connection between knowledge, and correct misconceptions after review summarize.
 Review: promote consistency between past and current predictions;

« Summary: summarize and utilize the relationships across classes;

« Correction: correct gradient conflicts in different learning methods

Manjing University of Aeronautics and Astronautics



Method-Knowledge Review

%5;;;@%1"%%

=
=

Eih A ALE

ﬁ% 1052 §-wz

2y

Manjing University of Aeronautics and Astronautics

This analysis is conducted on CIFAR100-LT dataset with an Imbalanced Factor (IF) of 100:
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(b) Comparison of KL Divergence
Across Classes for Different Methods
and Data Distributions.
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Optimize: only transfer and distill the knowledge that is correctly classified

define a correctly classified instances (CCI) set containing all correctly classified instances as:
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Humans are adept at summarizing connections and distinctions between knowledge.

However, under a long-tail distribution training setting, this supervision can mislead the model to
misclassify a tail class as a head class. For example:

Features

Samples

Head Class: Cygnus olor

Tail Class: Pelecanus onocrotalusr
r

Fig. 2: Correlation of features among differ-
ent samples in long-tailed data.
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Solution: Knowledge Summary Module

for C-th class, calculate the class center of f, by the median of all features across the C-th class:

fe = Median,, cp(f(zi;©¢—1))
calculate the correlation feature label by cosine similarity and reconstruct the label y:

« is a hyperparameter
£

M = = -
Y

Y + (1 i (1) .M M € (0,1) is the feature similarity matrix

Y is the label y after extending to the label matrix

KS loss: / Knowledge Summary .

Class Correlation Label One-Hot Label
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During the training process, our proposed KR and KS modules can easily combine
with the existing LTR methods. Therefore, the overall loss (Lgz) for implemen-
tation consists of two parts, the existing L;rgr loss for long-tailed recognition
and our Lxgr, Lis for KR and KS modules, respectively.

It is expressed as:

A
P T

Lrr =Lrrr+ (Lkr+ Lks) 9)

direction conflicts between the two gradients occur when cosa;; < 0




Method- Knowledge Correction

Solution: Knowledge Correction Module

OxrtOxs

b

0proj Gya*gxs

To address this issue, we introduce knowledge correction (KC) to mitigate
conflicts by projecting gradients when negative transfer occurs. Negative transfer
between two gradients g; and g; is identified when cos a(g;, g;) < 0. Following
this identification, each gradient is projected onto the orthonormal plane of the
other gradients to eliminate harmful conflicts. Therefore, we have the formula for

projecting the gradient £k onto the orthonormal plane of gradient Lxr + Lks
as:

- cos(gKk R+K S JLTR)
JKR+KS ‘= JKR+KS — - JLTR 10
Oum + - ”gLTR||2 ( )
final gradient update formula:
= JRL = gkRr+KS + 9LTR, if cOS(9kRrtKS,gLTR) <0
JKR+KS + gLTR, Otherwise

OrL
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Experiments &AL
Nanjing University of Aeronautics and Astronautics
Method | CIFAR-100-LT Method  |Many Medium Few All _
IF | 10 50 100 Softmax | 651 415 120 aso Daselines.
Softmax |59.1 458 41.4 Decouple-LWS| 61.8  47.6 530.9 50.8 re_balanc|ng: CRT,LWS
BBN  |59.8 49.3 44.7 BSCE 64.1 48.2 33.4 52.3 :
BSCE  [61.0 50.9 46.1 LADD  |ib&é 474 948623 multi-branch models: BBN,BSCE,LDAM
RIDE 61.8 51.7 48.0 ot : ; , ; A
SADE l63.6 538 49.4 RIDE | 680 529 351 563 ensemblelearning:NCL,RIDE,SADE
SADE 66.5 57.0 43.5 58.8
Softmax+RL|[59.6 46.2 41.9
BSCE+RL [64.5 52.2 47.9 Softmax+RL | 68.6 42.0 14.7 48.6
RIDE+RL |62.4 53.1 48.8 BSCE+RL 65.6 49.7 37.9 54.8
SADE+RL |64.5 55.4 50.7 PaCo+RL 64.0 52.5 42.1 56.4
RIDE+RL 68.9 54.1 38.6 59.0
BSCEf 63.0 - 50.3 SADE+RL | 66.3 58.3 47.8 60.2
PaCot 64.2 56.0 52.0
MDCSt | - - 561 SADEt |67.3 604 46.4 61.2
MDCS+t 72.6 58.1 44.3 61.8
BSCE+RLt |64.6 - 51.2
SADE+RL{ |66.8 59.1 54.7 SADE+RL t | 67.9 61.2 47.8 62.0
MDCS+RLt| - - B7.3 MDCS+RLYt | 72.7 59.5 46.0 62.7
Table 1: Comparisons on Table 2: Comparisons on ImageNet-

CIFAR100-LT datasets with the LT. { denotes models trained with Ran-
IF' of 10, 50, and 100. fdenotes dAugment [9] for 400 epochs.

models trained with RandAug-

ment [9] for 400 epochs.




Experiments Sk ALE
Nanijing University of Aeronautics and Astronautics
Method |[Many Medium Few |All
Method |[Many Medium Few | All SBoLfémax 74-; 263 68-0 63'7
70. 0. 70.4 [70.6 : :
Softmax 462 275 12.7131.4 LADE{} 64.4 47.7 34.3 |52.3 Many (Wlth more than 100 ImageS)
BLS 426 39.8 32.7(39.4 MiSLAS 71.7 T1.5 69.7 |70.7 Medium (with 2 1 im
LADE  |426 394 32.3(39.2 RIDE  |715 700 716 |7L8 edium (with 20 to 100 images)
RIDE 43.1 41.0 33.0(40.3 SADE 745 725 730 |72.9 Few (with less than 20 images)
SADE 40.4 43.2 36.8(/40.9
Softmax+RI|75.4 67.1  61.1 [65.5
Softmax+RI 46.1 28.0 15.6|32.8 BLS+RL 68.8 T72.5 75.9 [73.1
BLS+RL 43.0 40.3 34.8(41.1 LADE+RL [64.8 48.9 36.6 |[73.6
LADE+RL | 42.8 39.7 35.5|41.8 RIDE+RL |[71.4 70.9 74.8 |73.6
RIDE+RL | 43.1  41.9 36.9|42.1 SADE+RL |74.7 73.1 77.8 |[74.2
SADE+RL | 41.0 44.3 38.7[42.2
PaCot 69.5 734  73.0 |[73.0
PaCot | 36.1 47.2 33.9[41.2 SADE} 755 73.7  75.1 [74.5
PaCo+RL 1| 36.4 47.7 36.6|42.8 NOLt i L T O
PaCo+RLt [69.6 734 759 |[73.6
. . SADE+RLt|75.7 74.1 77.8 |[75.3
Table 3: Comparisons on Places-LT, NCL-RL{ |725 76.7 77.8 |76.5

starting from an ImageNet pre-trained
ResNet-152. tdenotes models trained
with RandAugment [9] for 400 epochs.

Table 4: Comparisons on iNaturalist
2018. t denotes models trained with
RandAugment [9] for 400 epochs.
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Method | Resnet-50| ResNeXt-50|Swin-T |Swin-S Method |Many|Med | Few | All
Softmax 41.6 44.4 42.6 42.9 Softmax 66.1 137.3110.6141.4
OLTR - 46.3 - - OLTR 61.8 |41.4|17.6| -

T-norm 46.7 49.4 . . T-norm 65.7 [43.6|17.3|43.2
cRT 47.7 49.9 - = cRT 64.0 |44.8|18.143.3
LWS 47.3 49.6 - " LDAM 61.5 |41.7|20.2|42.0
LDAM - - 50.6 | 49.5 RIDE 69.3 149.3|26.0|48.0
RIDE 54.9 56.4 56.3 54.2 SADE 60.3 150.2133.7149.4
Softmax+RI| 45.8 47.3 43.7 | 43.6 Softmax+RL| 66.8 |37.9/11.2|41.9
7-norm+RL| 47.3 50.5 - - LDAM+RL | 62.4 [42.4|28.3|49.2
cRT+RL 48.5 51.2 - o RIDE+RL |69.9|50.4|28.1[49.2
LWS+RL 48.5 50.5 . - SADE-+RL | 60.4 |50.8/35.5/50.7
LDAM+RL . ’ 52.1 | 50.3

RIDE-+RL 56.8 58.7 59.1 | 55.6

Table 6: Comparisons on CIFAR-

Table 5: Comparisons on ImageNet-LT IOO‘I_JT(IFZIOU) with different sam-
with different backbones. ple sizes.




Experiments

Method CIFAR100-LT ImageNet-LT iNaturalist 2018
Decouple 43.8 47.9 67.7
Mixup 45.1 51.5 70.0
MiSLAS 47.0 52.7 71.6
WD + WD & Max 53.6 53.9 70.2
Decouple + RL 50.9 54.5 72.8
MiSLAS & RL 53.1 56.0 74.2
WD & RL + WD & Max & RL 56.8 56.7 73.5

Table 7: Results of comparing and combining our method with other regularization-

based methods.
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The effective of temperature 7. The temperature parameter 7 is introduced
to soften the previous predictions, allowing the current model to learn from a
smoother, more generalized distribution. By adjusting the temperature parameter
during training, we can control the trade-off between accuracy and generalization
to optimize the current prediction. Higher temperature values lead to better
generalization but lower accuracy, while lower temperature values lead to better
accuracy but less generalization. In Figure. 5 (a), we show several settings of 7
on the CIFAR-100LT (IF=100) and ImageNet-LT, we observe that when the 7
set to 2, the models achieve the best performance.

g
g

& SADE+ gy on CIFAR-100
®- BSCE+ p on CIFAR-100 ~—— BSCE w/o cCl

4 SADE+RL O ImageNet-LT —— BSCE w/ CCl
&~ BSCE+ R on imageNet-LT

Top-1 Acc (%)
Top-1 Acc (%)
Top-1 Acc (%)

&
o
o

10 15 20 25 30 0 200 0

T Epoch Epoch 260
(a) The effect of 1. (c) The effect of CCI. (d) Direct matching logits.

Fig.5: Figure (a): The effect of temperature 7 for different methods and datasets.

Figure (b): The effect of our CCI. Figure (c): The effect of directing matching logits.




Component Analysis and Ablation Study

The effectiveness of our components KR, KS and KC. Our proposed
method is fundamentally composed of two primary components: Knowledge
Review (KR) and Knowledge Summary (KS). As shown in Tab 8, the KR
component is designed to enforce consistency across all categories. As a result, it
notably enhances the accuracy of the tail classes, but this comes at the expense of
a slight reduction in the accuracy of the head classes. In contrast, KS facilitates
learning across all categories by leveraging the inherent feature correlations,
compensating for the minor drawbacks introduced by KS, and ensuring an overall
improved performance.

Method ImageNet-LT iNaturalist 2018
KR KS KC RIDE SADE RIDE SADE

56.3 58.8 718 72.9

!

- - 580 59.7 724 73.3
- v - 584 593 727 73.6
v v - 58.6 60.0 729 73.8
v v v 59.0 60.2 73.6 74.2

Table 8: Ablation study on the components of our methods. Com-
parisons with different component combinations.
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