

Semi-supervised Multi-label Learning with Balanced Binary Angular Margin Loss

Ximing Li^{1,2} Silong Liang^{1,2} Changchun Li^{1,2,*} Pengfei Wang^{3,4} Fangming Gu^{1,2}

NeurIPS 2024

Background

 Multi-label learning is designed to tackle situations where each instance can be associated with multiple class labels, as opposed to traditional single-label learning where each instance is assigned with a single label.

- Dog
- Cat
- Tree
- Cloud
- Flower
- Rock
- ...

 Semi-supervised learning (SSL) aims to leverage the information of enormous unlabeled samples. Semi-supervised multi-label learning (SSMLL) is a combination of multi-label learning and semi-supervised learning.

ParN_C 模式识别与神经计算研究组 PAttern Recognition and NEural Computin

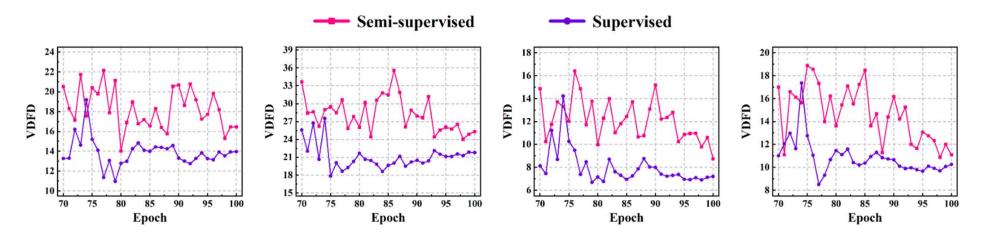


Figure 1: The variance difference between feature distributions (VDFD) of positive and negative samples computed in semi-supervised and supervised manners across labels $\{6, 7, 14, 17\}$ of *VOC2012*.

Motivation

Definition

$$y = \begin{cases} +1, \ p = \alpha, \\ -1, \ p = 1 - \alpha, \end{cases} \quad \mathbf{x} \sim \begin{cases} \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma}_{+}^{2}) & \text{if } y = +1; \\ \mathcal{N}(-\boldsymbol{\mu}, \boldsymbol{\Sigma}_{-}^{2}) & \text{if } y = -1, \end{cases}$$

where α is the prior probability of class "+1", $\boldsymbol{\mu} = \{\mu_1, \dots, \mu_d\}^{\top}, \boldsymbol{\Sigma}_+ = \text{diag}(\{\sigma_+^{(1)}, \dots, \sigma_+^{(d)}\}), \boldsymbol{\Sigma}_- = \text{diag}(\{\sigma_-^{(1)}, \dots, \sigma_-^{(d)}\}), \mu_i, \sigma_-^{(i)}, \sigma_+^{(i)} > 0 \ \forall i \in [d], \text{ and } \sum_{i=1}^d (\sigma_+^{(i)})^2 : \sum_{i=1}^d (\sigma_-^{(i)})^2 = 1 : M^2$ with $M > 0, M \neq 1$.

the linear model $f_{ssl}(\mathbf{x}) = \operatorname{sign}(\langle \mathbf{w}, \mathbf{x} \rangle + b)$

$$\mathcal{R}(f,+1) = \mathbb{E}_{(\mathbf{x},y)\sim\mathcal{P}^*} [\mathbb{1}(f(\mathbf{x})=-1)|y=+1]$$
$$\mathcal{R}(f,-1) = \mathbb{E}_{(\mathbf{x},y)\sim\mathcal{P}^*} [\mathbb{1}(f(\mathbf{x})=+1)|y=-1]$$

Motivation

Theorem 2.1. Given an SSBC dataset with pseudo-labels $S = \{(\mathbf{x}_i, y_i)\} = \{(\mathbf{x}_i, y_i^*)\} \cup \{(\mathbf{x}_i, \hat{y}_i)\},\$ the optimal linear classifier f_{ssl} minimizing the average standard classification error is given by:

$$f_{ssl} = \arg\min_{f} \mathbb{E}_{(\mathbf{x}, y) \sim \mathcal{S}}[\mathbb{1}(f(\mathbf{x}) \neq y)].$$

When M > 1, it has the intra-class standard classification errors for the two classes :

$$\mathcal{R}(f_{ssl},+1) = \Phi\left(A - M\sqrt{A^2 + q(M,\alpha,\epsilon_-,\epsilon_+)}\right),$$

$$\mathcal{R}(f_{ssl},-1) = \Phi\left(-M \cdot A + \sqrt{A^2 + q(M,\alpha,\epsilon_-,\epsilon_+)}\right),$$

and when M < 1, they are given by:

$$\mathcal{R}(f_{ssl},+1) = \Phi\left(A + M\sqrt{A^2 + q(M,\alpha,\epsilon_-,\epsilon_+)}\right),$$

$$\mathcal{R}(f_{ssl},-1) = \Phi\left(-M \cdot A - \sqrt{A^2 + q(M,\alpha,\epsilon_-,\epsilon_+)}\right),$$

where $\Phi(\cdot)$ is the cumulative distribution function (c.d.f.) of standard Gaussian distribution $\mathcal{N}(0, 1)$, $A = \frac{2\mu}{(M^2-1)\Sigma}, \quad q(M, \alpha, \epsilon_-, \epsilon_+) = \frac{2\log M+2C}{M^2-1}, \quad C = \log\left(\frac{\alpha(2-\epsilon_--2\epsilon_+)}{(1-\alpha)(2-2\epsilon_--\epsilon_+)}\right), \quad \mu = \sum_{i=1}^{i=d} \mu_i,$ $\Sigma = \sqrt{\sum_{i=1}^{i=d} (\sigma_+^{(i)})^2}, \quad \text{and} \quad \{\epsilon_-, \epsilon_+\} \text{ are the proportions of negative instances being treated as positive ones and positive instances being treated as negative ones within pseudo-labels, respectively.$

Motivation

Definition 2.2. (VCA) Given a classifier $f : \mathcal{X} \to \mathcal{Y}$ where $\mathcal{Y} = \{1, 2, 3, \dots, K\}$, the variance of class-wise accuracy of f is defined as $VCA(f) = \frac{1}{K} \sum_{i=1}^{K} (p(i) - \bar{p})$, where $p(i) = \mathbb{P}[f(\mathbf{x}) = i|y = i] = 1 - \mathbb{P}[f(\mathbf{x}) \neq i|y = i]$ and $\bar{p} = \frac{1}{K} \sum_{i=1}^{K} p(i)$.

Theorem 2.3. Given an trained linear SSBC model f_{ssl} in Eq.(3), the variance of class-wise accuracy $VCA(f_{ssl})$ is increasing when $M \to \infty$ for M > 1 and $M \to 0$ for M < 1. Suppose $\log\left(\frac{\alpha(2-\epsilon_{-}-2\epsilon_{+})}{(1-\alpha)(2-2\epsilon_{-}-\epsilon_{+})}\right) = 0$, then when M = 1, $\mathcal{R}(f_{ssl}, +1) = \mathcal{R}(f_{ssl}, -1)$ and $VCA(f_{ssl}) = 0$.

$$\mathcal{L}(\mathbf{W}) = \frac{1}{B_l K} \sum_{i=1}^{B_l} \sum_{k=1}^K \beta_{ik} \ell_{\mathsf{BBAM}}(p_{ik}^l, y_{ik}^l) + \frac{\lambda}{B_u K} \sum_{i=1}^{B_u} \sum_{k=1}^K \beta_{ik} \ell_{\mathsf{BBAM}}(p_{ik}^u, y_{ik}^u),$$

where

$$\beta_{ik} = \begin{cases} 1 & \text{if } (\mathbf{x}_i, \mathbf{y}_i) \in \Omega_k; \\ 1 & \text{if } y_{ik} = 1; \\ 0 & \text{otherwise}, \end{cases} \quad \forall k \in [K], \ \forall i \in [N_l] \text{ or } [N_u], \end{cases}$$

BBAM loss

$$\ell_{\text{BAM}}(p_{ik}, y_{ik}) = \begin{cases} -\log(\frac{1}{1+e^{-s*(p_{ik}-m)}}) & \text{if } y_{ik} = 1; \\ -\log(1-\frac{1}{1+e^{-s*(p_{ik}-m)}}) & \text{if } y_{ik} = 0, \end{cases}$$

where $p_{ik} = \cos(\theta_{ik}) = \frac{\mathbf{z}_i^\top \mathbf{W}_k^c}{\|\mathbf{z}_i\|_2 \|\mathbf{W}_k^c\|_2}$, $\|\cdot\|_2$ is the ℓ_2 -norm of vectors; \mathbf{z}_i and \mathbf{W}_k^c denote the latent feature of sample *i* and the weight vector of the classification layer for category *k*, respectively; θ_{ik} is the angle between \mathbf{z}_i and \mathbf{W}_k^c ; *s* and *m* are the parameters used to control the rescaled norm and magnitude of cosine margin, respectively.

BBAM loss

positive Gaussian distribution

negative Gaussian distribution

 $\mathcal{N}(\mu_k^{(p)},(\sigma_k^2)^{(p)}) \ \mathcal{N}(\mu_k^{(n)},(\sigma_k^2)^{(n)})$

transfer them into ones $\mathcal{N}(\mu_k^{(p)}, \widehat{\sigma}_k^2)$ and $\mathcal{N}(\mu_k^{(n)}, \widehat{\sigma}_k^2)$ with balanced variance $\widehat{\sigma}_k^2 = \frac{(\sigma_k^2)^{(p)} + (\sigma_k^2)^{(n)}}{2}$, by performing the following Gaussian linear transformations on those label angles:

$$\psi_k^{(p)}(\theta_{ik}) = a_k^{(p)} \theta_{ik} + b_k^{(p)}, \quad \psi_k^{(n)}(\theta_{ik}) = a_k^{(n)} \theta_{ik} + b_k^{(n)},$$
$$a_k^{(p)} = \frac{\widehat{\sigma}_k}{\sigma_k^{(p)}}, \quad b_k^{(p)} = (1 - a_k^{(p)}) \mu_k^{(p)}, \quad a_k^{(n)} = \frac{\widehat{\sigma}_k}{\sigma_k^{(n)}}, \quad b_k^{(n)} = (1 - a_k^{(n)}) \mu_k^{(n)}, \quad \forall k \in [K].$$
(7)

 $\psi_k^{(p)}(\theta_{ik}) \sim \mathcal{N}(\mu_k^{(p)}, \widehat{\sigma}_k^2) \quad \text{if } y_{ik} = 1; \quad \psi_k^{(n)}(\theta_{ik}) \sim \mathcal{N}(\mu_k^{(n)}, \widehat{\sigma}_k^2) \quad \text{if } y_{ik} = 0.$

BBAM loss

$$\ell_{\text{BBAM}}(p_{ik}, y_{ik}) = \begin{cases} -\log(\frac{1}{1+e^{-s*(\cos(\psi_k^{(p)}(\theta_{ik}))-m)}}) & \text{if } y_{ik} = 1; \\ -\log(1-\frac{1}{1+e^{-s*(\cos(\psi_k^{(n)}(\theta_{ik}))-m)}}) & \text{if } y_{ik} = 0. \end{cases}$$

Estimating label angle variances

How to approximate $\{(\mu_k^{(p)}, (\sigma_k^2)^{(p)})\}_{k=1}^{k=K}, \{(\mu_k^{(n)}, (\sigma_k^2)^{(n)})\}_{k=1}^{k=K}$

We calculate label prototypes $\{\mathbf{c}_k\}_{k=1}^{k=K}$ by averaging latent features of positive samples in \mathfrak{D} as:

$$\mathbf{c}_{k} = \frac{\sum_{i=1}^{N_{l}+N_{u}} \mathbb{1}(y_{ik}=1)\mathbf{z}_{i}}{\sum_{i=1}^{N_{l}+N_{u}} \mathbb{1}(y_{ik}=1)}, \ \forall k \in [K].$$

Consequently, the label angles between label prototypes and latent features of samples are given by:

$$\phi_{ik} = \arccos(\frac{\mathbf{z}_i^{\top} \mathbf{c}_k}{\|\mathbf{z}_i\|_2 \|\mathbf{c}_k\|_2}), \ \forall k \in [K], \ \forall i \in [N_l + N_u],$$

Estimating label angle variances

$$\begin{split} \mu_k^{(p)} &= \frac{\sum_{i=1}^{N_l+N_u} \mathbbm{1}(y_{ik}=1)\phi_{ik}}{\sum_{i=1}^{N_l+N_u} \mathbbm{1}(y_{ik}=1)}, \qquad (\sigma_k^2)^{(p)} = \frac{\sum_{i=1}^{N_l+N_u} \mathbbm{1}(y_{ik}=1)(\phi_{ik}-\mu_k^{(p)})^2}{\sum_{i=1}^{N_l+N_u} \mathbbm{1}(y_{ik}=1)-1}, \\ \mu_k^{(n)} &= \frac{\sum_{i=1}^{N_l+N_u} \beta_{ik} \mathbbm{1}(y_{ik}=0)\phi_{ik}}{\sum_{i=1}^{N_l+N_u} \beta_{ik} \mathbbm{1}(y_{ik}=0)}, \qquad (\sigma_k^2)^{(n)} = \frac{\sum_{i=1}^{N_l+N_u} \beta_{ik} \mathbbm{1}(y_{ik}=0)(\phi_{ik}-\mu_k^{(n)})^2}{\sum_{i=1}^{N_l+N_u} \beta_{ik} \mathbbm{1}(y_{ik}=0)}. \end{split}$$

Negative Sampling

the nearest neighbor negative sample sets

$$\widetilde{\Omega}_k = \{ (\mathbf{x}_i, \mathbf{y}_i) | d(\mathbf{z}_i, \mathbf{c}_k) \in \operatorname{Rank}(\{ d(\mathbf{z}_i, \mathbf{c}_k) \}_{(\mathbf{x}_i, \mathbf{y}_i) \in \widehat{\Omega}_k}), (\mathbf{x}_i, \mathbf{y}_i) \in \widehat{\Omega}_k \} \quad \forall k \in [K],$$

the negative sample set of category k

$$\widehat{\Omega}_k = \{ (\mathbf{x}_i^l, \mathbf{y}_i^l) | (\mathbf{x}_i^l, \mathbf{y}_i^l) \in \mathcal{D}_l, y_{ik}^l = 0 \} \cup \{ (\mathbf{x}_i^u, \mathbf{y}_i^u) | \mathbf{x}_i^u \in \mathcal{D}_u, y_{ik}^u = 0 \}.$$

the final negative sample sets

$$\Omega_k = \{ (\mathbf{x}_i, \mathbf{y}_i) | (\mathbf{x}_i, \mathbf{y}_i) \sim \text{Uniform}(\widetilde{\Omega}_k) \} \quad \forall k \in [K],$$

$$\mathcal{L}(\mathbf{W}) = \frac{1}{B_l K} \sum_{i=1}^{B_l} \sum_{k=1}^K \beta_{ik} \ell_{\text{BBAM}}(p_{ik}^l, y_{ik}^l) + \frac{\lambda}{B_u K} \sum_{i=1}^{B_u} \sum_{k=1}^K \beta_{ik} \ell_{\text{BBAM}}(p_{ik}^u, y_{ik}^u),$$

where

$$\beta_{ik} = \begin{cases} 1 & \text{if } (\mathbf{x}_i, \mathbf{y}_i) \in \Omega_k; \\ 1 & \text{if } y_{ik} = 1; \\ 0 & \text{otherwise,} \end{cases} \quad \forall k \in [K], \ \forall i \in [N_l] \text{ or } [N_u], \end{cases}$$

Table 2: Experimental results on images datasets. The best results are highlighted in boldface.

										V	OC									
Method		Micr	o-F1↑			Mac	o-F1↑			m	AP†			Hammi	ng Loss↓			One	Loss↓	
	$\pi = 5\%$	$\pi = 10\%$	$\pi=15\%$	$\pi = 20\%$	$\pi = 5\%$	$\pi = 10\%$	$\pi = 15\%$	$\pi = 20\%$	$\pi = 5\%$	$\pi = 10\%$	$\pi = 15\%$	$\pi = 20\%$	$\pi = 5\%$	$\pi = 10\%$	$\pi = 15\%$	$\pi = 20\%$	$\pi = 5\%$	$\pi = 10\%$	$\pi = 15\%$	$\pi=20\%$
SoftMatch	0.6542	0.7187	0.7461	0.7484	0.5868	0.6630	0.6931	0.6876	0.6295	0.7235	0.7721	0.7867	0.0594	0.0368	0.0319	0.0294	0.4398	0.1655	0.1308	0.1148
FlatMatch	0.6493	0.7038	0.7420	0.7465	0.5344	0.6313	0.6666	0.6597	0.6468	0.7430	0.7923	0.8022	0.0386	0.0322	0.0313	0.0290	0.1983	0.1366	0.1238	0.1097
MIME	0.3650	0.6607	0.7013	0.7021	0.2439	0.5442	0.6425	0.5898	0.6653	0.7553	0.8090	0.8137	0.0546	0.0407	0.0336	0.0333	0.2099	0.1218	0.0835	0.0949
DRML	0.6450	0.6525	0.7274	0.7525	0.5660	0.5339	0.6864	0.7495	0.6058	0.6852	0.7131	0.7272	0.0564	0.0518	0.0377	0.0381	0.3542	0.2888	0.1720	0.1512
CAP	0.6162	0.6573	0.6798	0.7073	0.5822	0.6308	0.6536	0.6636	0.7616	0.8216	0.8348	0.8460	0.0801	0.0675	0.0622	0.0591	0.1303	0.0918	0.0827	0.0755
S ² ml ² -bbam	0.7897	0.8401	0.8443	0.8458	0.7306	0.8015	0.8124	0.8141	0.7866	0.8345	0.8454	0.8458	0.0310	0.0259	0.0243	0.0233	0.1087	0.0867	0.0817	0.0795
										CC	CO									
Method		Micr	o-F1↑			Mac	o-F1↑			m	A P↑			Hammi	ng Loss↓			One	Loss↓	
-	$\pi = 5\%$	$\pi = 10\%$	$\pi = 15\%$	$\pi = 20\%$	$\pi = 5\%$	$\pi = 10\%$	$\pi = 15\%$	$\pi = 20\%$	$\pi = 5\%$	$\pi = 10\%$	$\pi = 15\%$	$\pi = 20\%$	$\pi = 5\%$	$\pi = 10\%$	$\pi = 15\%$	$\pi = 20\%$	$\pi = 5\%$	$\pi = 10\%$	$\pi = 15\%$	$\pi = 20\%$
SoftMatch	0.5763	0.6273	0.6487	0.6676	0.4283	0.5265	0.5493	0.5830	0.5624	0.6194	0.6395	0.6622	0.0235	0.0218	0.0211	0.0205	0.1293	0.0948	0.0844	0.0879
FlatMatch	0.5960	0.6389	0.6590	0.6720	0.4794	0.5341	0.5710	0.5870	0.5827	0.6335	0.6542	0.6654	0.0227	0.0213	0.0208	0.0203	0.1215	0.1002	0.0933	0.0878
MIME	0.2982	0.4378	0.4906	0.5323	0.2557	0.3731	0.4096	0.4545	0.5372	0.5991	0.6379	0.6633	0.0302	0.0265	0.0250	0.0236	0.1495	0.1110	0.0883	0.0799
DRML	0.6071	0.6226	0.6492	0.6486	0.5345	0.5604	0.5779	0.5867	0.5118	0.5461	0.6026	0.6177	0.0242	0.0240	0.0230	0.0223	0.1438	0.1288	0.1243	0.1039
CAP	0.5629	0.5657	0.5724	0.5696	0.5230	0.5306	0.5402	0.5416	0.6243	0.6736	0.6911	0.7041	0.0523	0.0512	0.0499	0.0558	0.1004	0.0841	0.0788	0.0726
S ² ml ² -bbam	0.6830	0.7074	0.7150	0.7246	0.6144	0.6480	0.6594	0.6726	0.6354	0.6741	0.6886	0.7023	0.0230	0.0212	0.0206	0.0201	0.1000	0.0878	0.0824	0.0799
										A	WA									
Method		Micr	o-F1↑			Mac	o-F1↑			m	AP↑			Hammi	ng Loss↓			One	Loss↓	
a	$\pi = 5\%$	$\pi = 10\%$	$\pi = 15\%$	$\pi = 20\%$	$\pi = 5\%$	$\pi = 10\%$	$\pi = 15\%$	$\pi = 20\%$	$\pi = 5\%$	$\pi = 10\%$	$\pi = 15\%$	$\pi = 20\%$	$\pi = 5\%$	$\pi = 10\%$	$\pi = 15\%$	$\pi = 20\%$	$\pi = 5\%$	$\pi = 10\%$	$\pi = 15\%$	$\pi=20\%$
SoftMatch	0.6992	0.6973	0.7024	0.7024	0.5476	0.5284	0.5524	0.5457	0.6368	0.6524	0.6494	0.6518	0.2160	0.2155	0.2132	0.2126	0.1580	0.08876	0.1494	0.1549
FlatMatch	0.6918	0.6977	0.6989	0.7013	0.5221	0.5487	0.5507	0.5636	0.6393	0.6459	0.6565	0.6577	0.2190	0.2167	0.2165	0.2164	0.1029	0.0936	0.1116	0.1162
MIME	0.1470	0.3889	0.4893	0.4090	0.0705	0.1830	0.2659	0.2327	0.3992	0.3803	0.4762	0.5265	0.3570	0.3290	0.3064	0.3012	0.1850	0.2091	0.1664	0.2004
DRML	0.6827	0.6856	0.6942	0.6893	0.5399	0.5541	0.5727	0.5618	0.6160	0.6246	0.6377	0.6338	0.2285	0.2270	0.2226	0.2258	0.1360	0.1801	0.2609	0.1839
CAP	0.6868	0.7065	0.7091	0.7099	0.5742	0.5864	0.5905	0.5914	0.6390	0.6415	0.6440	0.6451	0.3120	0.2727	0.2589	0.2617	0.1146	0.0933	0.1045	0.1199
S ² ml ² -bbam	0.7213	0.7255	0.7215	0.7279	0.5853	0.5914	0.5905	0.5944	0.6419	0.6463	0.6416	0.6476	0.2091	0.2060	0.2109	0.2042	0.1206	0.1103	0.1149	0.1188

Table 3: Experimental results on text datasets. The best results are highlighted in boldface.

										Ohs	umed									
Method		Micr	o-F1↑			Mac	ro-F1↑			m	AP↑			Hammi	ng Loss↓			One	Loss↓	
	$\pi = 5\%$	$\pi = 10\%$	$\pi = 15\%$	$\pi = 20\%$	$\pi = 5\%$	$\pi = 10\%$	$\pi = 15\%$	$\pi = 20\%$	$\pi = 5\%$	$\pi = 10\%$	$\pi = 15\%$	$\pi = 20\%$	$\pi = 5\%$	$\pi = 10\%$	$\pi = 15\%$	$\pi = 20\%$	$\pi = 5\%$	$\pi = 10\%$	$\pi = 15\%$	$\pi = 20\%$
SoftMatch	0.4769	0.4478	0.4462	0.4449	0.3056	0.2366	0.2348	0.2229	0.4664	0.5106	0.5218	0.5392	0.0756	0.0798	0.0801	0.0803	0.4213	0.5036	0.5274	0.5140
FlatMatch	0.5161	0.4836	0.4254	0.4472	0.3073	0.2262	0.1904	0.1775	0.4187	0.4751	0.4993	0.5139	0.0699	0.0747	0.0831	0.0799	0.3943	0.4416	0.5824	0.5008
DRML	0.3975	0.4015	0.4185	0.4055	0.1903	0.1972	0.1996	0.2070	0.1833	0.1931	0.2083	0.2140	0.0939	0.0868	0.0873	0.0851	0.6020	0.5677	0.5760	0.5496
CAP	0.5562	0.5776	0.5819	0.5455	0.4743	0.5144	0.5285	0.5214	0.4722	0.5370	0.5740	0.5995	0.0678	0.0840	0.0752	0.0967	0.3237	0.2746	0.2541	0.2493
S ² ml ² -bbam	0.6671	0.7100	0.7196	0.7550	0.6058	0.6515	0.6719	0.7120	0.5537	0.6345	0.6604	0.6884	0.0467	0.0409	0.0243	0.0346	0.2417	0.2186	0.2068	0.1710
										AA	APD									
Method		Micr	o- <mark>F</mark> 1↑			Mac	ro-F1↑			1.166.00	APD AP†			Hammi	ng Loss↓			One	Loss↓	
Method	$\pi = 5\%$			$\pi = 20\%$	$\pi = 5\%$			$\pi = 20\%$	$\pi = 5\%$	m/	A P↑	$\pi = 20\%$	$\pi = 5\%$			$\pi = 20\%$	$\pi = 5\%$			$\pi = 20\%$
Method SoftMatch	$\pi = 5\%$ 0.3345			$\pi = 20\%$ 0.3279	$\pi = 5\%$ 0.0612			$\pi = 20\%$ 0.0481	$\pi = 5\%$ 0.3753	m/	A P↑	$\pi = 20\%$ 0.3990	$\pi = 5\%$ 0.0596			$\pi = 20\%$ 0.0602	$\pi = 5\%$ 0.6630			$\pi = 20\%$ 0.6627
		$\pi = 10\%$	$\pi = 15\%$	10/12/12/14/12/17/0		$\pi = 10\%$	$\pi = 15\%$			m_{π} $\pi = 10\%$	$\mathbf{AP\uparrow}$ $\pi = 15\%$		TON INVALUES	$\pi = 10\%$	$\pi = 15\%$	0.00000000		$\pi = 10\%$	$\pi = 15\%$	
SoftMatch	0.3345	$\pi = 10\%$ 0.3325	$\pi = 15\%$ 0.3325	0.3279	0.0612	$\pi = 10\%$ 0.0514	$\pi = 15\%$ 0.0520	0.0481	0.3753	$m\lambda$ $\pi = 10\%$ 0.3949	AP \uparrow $\pi = 15\%$ 0.4084	0.3990	0.0596	$\pi = 10\%$ 0.0598	$\pi = 15\%$ 0.0598	0.0602	0.6630	$\pi = 10\%$ 0.6630	$\pi = 15\%$ 0.6630	0.6627
SoftMatch FlatMatch	0.3345 0.3221	$\pi = 10\%$ 0.3325 0.3147	$\pi = 15\%$ 0.3325 0.3155	0.3279 0.3155	0.0612 0.0519	$\pi = 10\%$ 0.0514 0.0439	$\pi = 15\%$ 0.0520 0.0437	0.0481 0.0437	0.3753 0.3571	$m\lambda$ $\pi = 10\%$ 0.3949 0.3706		0.3990 0.3621	0.0596 0.0607	$\pi = 10\%$ 0.0598 0.0614	$\pi = 15\%$ 0.0598 0.0613	0.0602 0.0613	0.6630 0.6629	$\pi = 10\%$ 0.6630 0.6631	$\pi = 15\%$ 0.6630 0.6635	0.6627 0.6634

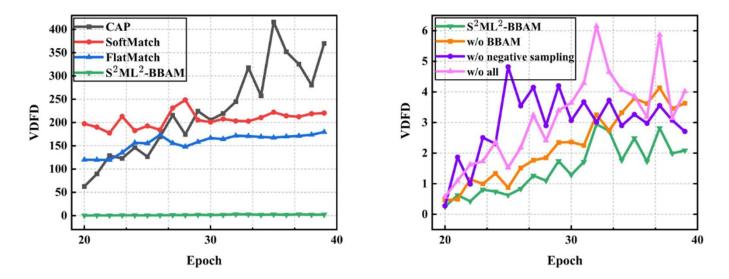


Figure 2: Comparison of VDFD on VOC2012.

				V	DC				
Metric	$\pi = $	5%	$\pi = 1$.0%	$\pi = 1$	5%	$\pi=20\%$		
	S ² ML ² -BBAM	w/o BBAM	S ² ML ² -BBAM	w/o BBAM	S ² ML ² -BBAM	w/o BBAM	S ² ML ² -BBAM	w/o BBAM	
Micro-F1	0.7897	0.7845	0.8401	0.8206	0.8443	0.8301	0.8458	0.8318	
Macro-F1	0.7306	0.7247	0.8015	0.7789	0.8124	0.7988	0.8141	0.7967	
mAP	0.7866	0.7881	0.8345	0.8204	0.8454	0.8274	0.8458	0.8282	
				CO	СО				
Metric	$\pi = \xi$	5%	$\pi = 1$		$\frac{1}{\pi} = 1$	5%	$\pi = 2$	0%	
Metric	$\pi = \frac{1}{\mathbf{S}^2 \mathbf{M} \mathbf{L}^2 - \mathbf{B} \mathbf{B} \mathbf{A} \mathbf{M}}$	5% w/o BBAM	$\pi = 1$ $\mathbf{S}^{2}\mathbf{ML}^{2}\mathbf{-BBAM}$			5% w/o BBAM	$\pi = 2$ $\mathbf{S}^{2}\mathbf{ML}^{2}\mathbf{-BBAM}$	0% w/o BBAM	
Metric Micro-F1				.0%	$\pi = 1$				
	S ² ML ² -BBAM	w/o BBAM	S ² ML ² -BBAM	.0% w/o BBAM	$\pi = 1$ $S^2 M L^2 - B B A M$	w/o BBAM	S ² ML ² -BBAM	w/o BBAM	

Table 4: Results of the ablative study on VOC2012 and COCO.

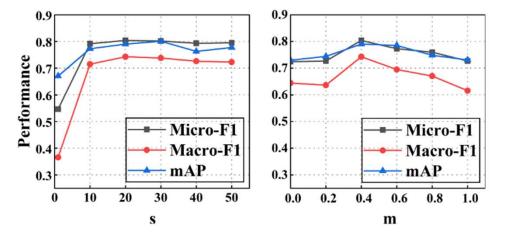


Figure 3: The sensitivity analysis of the rescaled norm and magnitude $\{s, m\}$ of cosine margin on VOC2012 with $\pi = 5\%$.

Thanks