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The research of time-dependent partial differential equations (PDEs) is regarded as one of
the most important disciplines in applied mathematics. PDEs appear ubiquitously in a broad
spectrum of fields including physics, biology, chemistry, and finance, to name a few.

A time-dependent partial differential equation is an equation of the form:
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where u = u(xq,...,x,,t) is unknown, x; € R are spatial variables, and the operator f maps
RY — R.
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The conventional approaches, such as finite element method (Bathe, 2007) or pseudospectral
method (Fornberg, 1998), suffer from high computational costs in constructing meshes for high-
dimensional PDEs. With the development of scientific machine learning, Physics-informed neural
networks (PINNs) (Lagaris et al., 1998; Raissi et al., 2019) have emerged as a promising novel
approach. Conventional PINNs and most variants employ multilayer perceptrons (MLP) as end-toend
frameworks for point-wise predictions, achieving remarkable success in various scenarios.

But conventional PINNs, largely relying on MLP-based architecture, can overlook important
temporal dependencies in real-world physical systems.

Long Short-Term Memory (LSTM) is a neural network built upon RNNs. Unlike vanilla RNNs, which
suffer from losing long term information and high probability of gradient vanishing or exploding, LSTM
has a specifically designed memory cell with a set of new gates such as input gate and forget gate.

Equipped with these new gates which control the time to preserve and pass the information, LSTM is

capable of learning long term dependencies without the danger of having gradient vanishing or
exploding.



Inspired by numerical PDE schemes and LSTM neural network, we propose a new deep learning
framework, denoted as Neural-PDE. It simulates multi-dimensional governing laws, represented by
time-dependent PDEs, from time series data generated on some grids and predicts the next n time

steps data.

Long Short-Term Memory networks (LSTM):
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Long Short-Term Memory networks (LSTM):
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where o is the logistic sigmoid function, W's are weight matrices, bs are bias vectors, and
subscripts i, f, o and ¢ denote the input gate, forget gate,output gate and cell vectors respectively,
all of which have the same size as hidden vector h.
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Recurrent neural network including LSTM is an artificial neural network structure of the form:

ht, :U(Wh;rmt _l_whhht—l +bh.) — ( ht l) b(mﬂ .’.Cl 132 ,.’BL)
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Canonical structure for such recurrent neural network usually calculates the current state value
by its previous time step value ht~1 and current state input xt. Similarly, in numerical PDEs, the

next step data at a grid point is updated from the previous (and current) values on its nearby
grid points.
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Thus, what if we replace the temporal input k=1 and xt with spatial information? A simple sketch of
the upwinding method for a 1D example of u(x; t):

uy + vu, =0
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f¢ represents the dynamics of the hidden layers in decoder with parameters 6, and f, specifies the
dynamics of the LSTM layer in encoder withe parameters n. The function fy, simulates the
dynamics of the Neural-PDE with paramaters 6 and n.
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Neural-PDE
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In particular, we use the bidirectional LSTM to better retain the state
information from data on grid points which are neighbourhoods in the
mesh but far away in input matrix.
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For a n-dimensional time-dependent partial differential equation with K collocation points,
the input and output data for te(0, T) will be of the form:
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By adding Bidirectional LSTM encoder in the Neural-PDE, it will automatically extract the
information from the time series data as:

B(K,M) = PDESolver(A(K,N)) = PDESolver(al,a),--- a,--- ,a¥y)
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Table 1: Error analysis models

Wave Heat Burgers’
Equation 1wy = #u“ = Uy % +u g” 0. 12;1
IC sin(4mx) 6sin(rx) w(0<zxz<L,t=0)=0.9
BC periodic periodic periodic
Table 2: L? error for model evaluation B(K,10) = PDESolver(A(K,30))
K =l Wave Heat Burgers’

At = 0.1 4385 x 1073 6.912x 10~° 9.450 x 10~4
At=0.01 3.351 x 10~ 5.809 x 105 5.374 x 103
At =0.001 1.311x107° 3.757x10~° 1.244 x10~3

We used the Neural-PDE which only consists of 3 layers: 2 bi-Istm (encoder-decoder) layers with 20
neurons each and 1 dense output layer with 10 neurons and achieved MSEs from 0(1073) to 0(107°)
within 20 epochs, a MLP based neural network such as Physical Informed Neural Network usually
will have more layers and neurons to achieve similar L? errors.
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Wave equation
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Figure 5: Comparison between exact solution and Neural-PDE prediction of

Figure 4: The Neural-PDE for solving the wave equation. the 1D wave equation at various time points.
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Heat equation
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Figure 6: Heatmaps of the heat equation data. dz = 0.02,dy = 0.02, 6t =

104, MSE: 2.1551 x 107S.

-1.0

-0.8

0.6

0.4

0.2

0.0

Predicted Data

-1.0
238
476
74 0.8
Q. 952
% 1190 0.6
© 1428
E 1666 0.4
= 1904
2142
2380 0.2
2618
0.0
cxpNERzIaQEeR
SR8 R882853

(b) Predicted Test Dataset

0.48
0.42
0.36
0.30
0.24
0.18
0.12
0.06
0.00

[Fo.a8
0.42
036
0.30
0.24
0.18
0.12
0.06
" B 00

TR AXE

NANJING UNIVERSITY OF A3 i@ PUAIIE s ARETAS IR AL E %,

Predicted

0.48
0.42
0.36
0.30
0.24
0.18
0.12
0.06
0.00

(b)

Model Log Loss
"\ —— train
\ cv

] = \ A
== \v/\\/ X \/\ = \
\

0 5 10 15
epoch

(d) Training Metrics

Figure 7: The Neural-PDE for solving the 2D heat equation. (a) is the exact
solution u(x, y,t = 0.15) at the final state. (b) is the Neural-PDE prediction.
(¢) is the corresponding error map and (d) shows the training and cross-

validation errors.
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Inviscid Burgers’ Equation
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Figure 8: Neural-PDE prediction on the 2D Burgers’ equation.
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Figure 9: Neural-PDE shows accurate prediction on Burgers’ equation.
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