Test-Time Linear Out-of-Distribution Detection

Ke Fan^{1*}, Tong Liu^{2*}, Xingyu Qiu¹, Yikai Wang¹, Lian Huai^{2†}, Zeyu Shangguan², Shuang Gou², Fengjian Liu², Yuqian Fu¹, Yanwei Fu¹, Xingqun Jiang² ¹Fudan University ²BOE Technology Group

CVPR 2024

Background

▶ OOD/OSR:

• Correctly classify ID (in-distribution) samples + reject OOD (out-of-distribution) samples

Test-Time Adaptation (TTA):

• TTA adapts the trained model to the novel data by updating its parameters with a mini-batch or full unlabeled test data during testing.

Recent advances in open set recognition: A survey TPAMI 2021

Motivation

Figure 2. Visualization of Canonical-Correlation Analysis of ImageNet and two OOD datasets' features and OOD scores.

Method

► Model OOD score:

$$s = \mathbf{z}^{\mathsf{T}} \boldsymbol{\beta} + \boldsymbol{\varepsilon}.$$

► Ranking problem:

Suppose there exist a groundtruth OOD score: $s = \mathbf{z}^{\top} \boldsymbol{\beta}$

It can perfectly rank ID and OOD samples: $\mathbf{z}_{in}^{\top}\beta > \mathbf{z}_{out}^{\top}\beta$.

If the error distorted the ranking: $\mathbf{z}_{in}^{\top}\beta + \varepsilon_{in} < \mathbf{z}_{out}^{\top}\beta + \varepsilon_{out}$

detectors make mistakes

Aim: estimate the β from the feature-score pairs (z_i, s_i)

get a more precise estimation of *S*

Method

►RTL

$$\hat{\beta} = \underset{\beta}{\operatorname{argmin}} \sum_{i=1}^{n} (s_i - \mathbf{z}_i^{\top} \beta)^2,$$

which yields the closed-form solution

 $\hat{\beta} = (\mathbf{Z}^{\top}\mathbf{Z})^{\dagger}\mathbf{Z}^{\top}\mathbf{S},$

then

$$\hat{s}_{\text{ours}} = \mathbf{z}_i^{\mathsf{T}} \hat{\beta}.$$

RTL++ When OOD methods do not work good enough,

introducing an explicit data-dependent variable γ_i to model this small amount of large error

$$s_i = \mathbf{z}_i^\top \beta + \gamma_i + \varepsilon_i.$$

Aim: find samples with zero γ_i to fit β sparse

$$\min_{\beta,\gamma} \sum_{i=1}^{n} \left[\frac{1}{2} (s_i - \mathbf{z}_i^{\mathsf{T}} \beta - \gamma_i)^2 + \lambda |\gamma_i| \right]$$

Figure 1. Illustration of our RTL. <u>Blue/orange</u> points denote <u>in/out-of-distribution</u> features. The probability density plot of the OOD score distributions of in and out-of-distribution samples are different. We fit a linear regression between the OOD scores and features as a robust test-time learning method. Then we calibrate the OOD scores to get better OOD predictions.

$$\min_{\beta,\gamma} \sum_{i=1}^{n} \left[\frac{1}{2} (s_i - \mathbf{z}_i^{\mathsf{T}} \beta - \gamma_i)^2 + \lambda |\gamma_i| \right]$$

Suppose all γ_i are resolved, we can get closed-form estimation of β

$$\hat{\beta} = (\mathbf{Z}^{\top}\mathbf{Z})^{\dagger}\mathbf{Z}^{\top}(\mathbf{S}-\gamma)$$

Define projection $\tilde{\mathbf{Z}} = \mathbf{I} - \mathbf{Z} (\mathbf{Z}^{\top} \mathbf{Z})^{\dagger} \mathbf{Z}^{\top}$ and $\tilde{\mathbf{S}} = \tilde{\mathbf{Z}} \mathbf{S}$.

Simplify the objective to Lasso
$$\min_{\gamma} \frac{1}{2} \|\tilde{\mathbf{S}} - \tilde{\mathbf{Z}}\gamma\|_2^2 + \lambda \|\gamma\|_1$$

Choose the most reliable subset to estimate β

$$\hat{\boldsymbol{\beta}} = (\mathbf{Z}_{\mathrm{sub}}^{\top} \mathbf{Z}_{\mathrm{sub}})^{\dagger} \mathbf{Z}_{\mathrm{sub}}^{\top} \mathbf{S}_{\mathrm{sub}}$$

Algorithm 1: Subset selection of RTL++

- **1 Input:** features \mathbf{z}_i and OOD score s_i , $1 \le i \le n$,
- 2 Normalize \mathbf{z}_i to unit Euclidean norm
- 3 Apply dimensionality reduction on \mathbf{z}_i to $d \ll n$
- 4 Stack \mathbf{z}_i and s_i by rows to \mathbf{Z} and \mathbf{S}
- s Calculate projection $\tilde{\mathbf{Z}} = \mathbf{I} \mathbf{Z} (\mathbf{Z}^{\top} \mathbf{Z})^{\dagger} \mathbf{Z}^{\top}$ and $\tilde{\mathbf{S}} = \tilde{\mathbf{Z}} \mathbf{S}$
- 6 Solving Lasso $\hat{\gamma} = \operatorname{argmin}_{\gamma} \frac{1}{2} \|\tilde{\mathbf{S}} \tilde{\mathbf{Z}}\gamma\|_{2}^{2} + \lambda \|\gamma\|_{1}$
- 7 Select a subset $\hat{\mathbf{Z}}$ with the lowest p% of $|\hat{\gamma}_i|$.
- 8 return $\hat{\mathbf{Z}}$

Method

▶ Online RTL

Two batch data pairs:
$$\mathbf{Z} = \begin{bmatrix} \mathbf{Z}_1 \\ \mathbf{Z}_2 \end{bmatrix}, S = \begin{bmatrix} \mathbf{S}_1 \\ \mathbf{S}_2 \end{bmatrix}$$

Recall that $\hat{\boldsymbol{\beta}} = (\mathbf{Z}^\top \mathbf{Z})^\dagger \mathbf{Z}^\top \mathbf{S}$
 $\mathbf{Z}^\top \mathbf{Z} = \begin{bmatrix} \mathbf{Z}_1^\top & \mathbf{Z}_2^\top \end{bmatrix} \begin{bmatrix} \mathbf{Z}_1 \\ \mathbf{Z}_2 \end{bmatrix} = \mathbf{Z}_1^\top \mathbf{Z}_1 + \mathbf{Z}_2^\top \mathbf{Z}_2$
 $\mathbf{Z}^\top \mathbf{S} = \begin{bmatrix} \mathbf{Z}_1^\top & \mathbf{Z}_2^\top \end{bmatrix} \begin{bmatrix} \mathbf{S}_1 \\ \mathbf{S}_2 \end{bmatrix} = \mathbf{Z}_1^\top \mathbf{S}_1 + \mathbf{Z}_2^\top \mathbf{S}_2$

Experiments

	·	and a second			OOD Dataset	iNat	uralist	S	UN	Pla	aces	Tex	tures	Ave	erage
In Dataset	CIFA	AR-10	CIFA	R-100	Metric	FPR95	AUROC	FPR95	AUROC	FPR95	AUROC	FPR95	AUROC	FPR95↓	AUROC ↑
Metric	ггкээ	AUKOC	ггкээ4	AUROC	IF	88 58	61.60	90.12	57.85	93.45	50.24	54 34	87 76	81.62	64 36
Softmax	51.37	90.87	80.21	75.67	LOF	95.16	51.57	94.89	52.27	93.05	56.37	82 02	65 39	91.28	56 40
+RTL	12.30	97.01	51.63	84.50	GMM	87.90	68.43	89.99	63.29	96.85	52.83	95.37	35.34	92.53	54.97
+RTL++	13.50	96.42	43.73	87.06	GradNorm	50.03	90.33	46.48	89.03	60.86	84.82	61.42	81.07	54.70	86.31
Energy	32.98	91.88	73.46	79.67	MSP	63.69	87.59	79.98	78.34	81.44	76.76	82.73	74.45	76.96	79.29
+RTL	18.01	94.96	60.63	81.15	+RTL	21.03	94.98	50.68	87.14	57.22	84.48	58.48	80.24	46.85	86.71
+RTL++	16.14	95.64	58.06	82.43	+RTL++	18.76	95.60	48.40	88.70	56.72	85.32	59.98	79.91	45.97	87.38
ODIN	35.77	90.96	74.55	77.23	Energy	64.91	88.48	65.33	85.32	73.02	81.37	80.87	75.79	71.03	82.74
+RTL	37.94	86.10	51.87	81.52	+RTL	45.48	91.04	52.06	88.68	62.68	84.35	69.49	75.39	57.43	84.87
+RTL++	35.79	87.24	51.73	82.74	+RTL++	41.57	92.03	49.84	89.32	62.37	84.05	70.44	76.52	56.06	85.48
KL	32.98	91.88	73.46	79.67	KL	64.91	88.48	65.32	85.31	73.02	81.37	80.87	75,79	71.03	82.74
+RTL	18.01	94.96	60.63	81.15	+RTL	45.48	91.04	52.06	88.68	62.68	84.35	69.49	75.39	57.43	84.87
+RTL++	16.12	95.64	58.06	82.43	+RTL++	41.57	92.03	49.84	89.32	62.37	84.05	70.44	76.52	56.06	85.48
IF	79.96	62.47	80.91	66.15	ODIN	62.69	89.36	71.67	83.92	76.27	80.67	81.31	76.30	72.99	82.56
LOF	95.81	56.45	98.23	43.32	+RTL	35.27	92.87	51.59	88.40	60.71	84.44	66.72	76.78	53.57	85.62
GMM	87.70	58.28	94.06	69.96	+RTL++	36.10	92.78	51.87	88.23	61.35	84.28	67.06	76.58	54.09	85.47
GradNorm	59.84	71.65	86.55	57.56	interi	23.10		01.07	00.20	01.00	0	01.00		0	

Table 2. Results on CIFAR. The best and second best results are highlighted by fonts of text bold and underlined, respectively.

Table 3. Results on ImageNet-1k and iNaturalist/SUN/Places/Textures datasets. The best and second-best results are highlighted in bold and underlined font, respectively.

In Dataset	CIF	AR-10	CIFAR-100			
Metric Size	FPR95↓	AUROC [↑]	FPR95↓	AUROC		
MSP	51.37	90.87	80.21	75.67		
+Online RTL	15.06	96.05	55.84	83.31		
Energy	32.98	91.88	73.46	79.67		
+Online RTL	18.57	94.89	62.00	80.91		
ODIN	35.77	90.96	74.55	77.23		
+Online RTL	40.30	85.15	54.66	80.24		
KL	32.98	91.88	73.46	79.67		
+Online RTL	18.57	94.89	62.00	80.91		

Table 4. Results on CIFAR under different OOD detector.

In Dataset	CIF	AR-10	CIFAR-100			
Batch Size	FPR95↓	AUROC [↑]	FPR95↓	AUROC [↑]		
Raw Softmax	51.37	90.87	80.21	75.67		
32	15.06	96.05	55.84	83.31		
64	15.04	96.07	55.77	83.34		
128	14.99	96.10	55.64	83.38		
256	14.79	96.24	55.29	83.53		
512	14.53	96.38	54.79	83.69		
1024	14.16	96.52	53.98	83.89		
All data	12.30	97.01	51.63	84.50		

Table 5. Online RTL on CIFAR with different batch size.

Experiments

Figure 6. RTL++ results with different percentile of selected subset data on CIFAR-100 with MSP(left) and ODIN(right).

Figure 2. Qualitative examples

Thank you!