

1

UNSUPERVISED LEARNING OF FULL-WAVEFORM INVERSION: CONNECTING CNN AND PARTIAL DIFFERENTIAL EQUATION IN A LOOP

Peng Jin^{1,2,*}, Xitong Zhang^{1,3,*}, Yinpeng Chen⁴, Sharon Xiaolei Huang², Zicheng Liu⁴ and Youzuo Lin¹

ICLR 2022

Introduction

Full Waveform Inversion (FWI)

Introduction

Forward Modeling and Data-driven FWI

Figure 2: Schematic illustration of data-driven FWI and forward modeling. Neural networks are employed to infer velocity maps from seismic data while forward modeling is to calculate the seismic data using governing wave equations with velocity map provided.

acoustic wave equation :

$$\nabla^2 p(x,z,t) - \frac{1}{c(x,z)^2} \frac{\partial^2 p(x,z,t)}{\partial t^2} = S_{xs,f}(x,z,t) \quad (1)$$

P: pressure wavefield C: velocity map S: source

These models are prone to making unreasonable or unrealistic predictions that do not conform to physical mechanisms.

Method

Unsupervised Learning FWI

Advantage: It incorporates physical prior knowledge, reducing the demand for labeled data.

Figure 1: Schematic illustration of our proposed method, which comprises a CNN to learn an inverse mapping and a differentiable operator to approximate the forward modeling of PDE.

Method

Differentiable forward modeling

Apply the standard finite difference (FD) in the space domain and time domain to discretize the original wave

acoustic wave equation: $\nabla^2 p(\mathbf{r},t) - \frac{1}{v(\mathbf{r})^2} \frac{\partial^2 p(\mathbf{r},t)}{\partial t^2} = s(\mathbf{r},t) , \qquad (1)$ $\frac{\partial^2 p(\mathbf{r},t)}{\partial t^2} \approx \frac{1}{(\Delta t)^2} (p_{\mathbf{r}}^{t+1} - 2p_{\mathbf{r}}^t + p_{\mathbf{r}}^{t-1}) + O[(\Delta t)^2] , \qquad (5)$

where p_{r}^{t} denotes the pressure wavefields at timestep t, and p_{r}^{t+1} and p_{r}^{t-1} are the wavefields at $t + \Delta t$ and $t - \Delta t$, respectively. The Laplacian of p(r, t) can be estimated in the similar way on the space domain (see Appendix A.2). Therefore, the wave equation can then be written as

$$p_{\mathbf{r}}^{t+1} = (2 - v^2 \nabla^2) p_{\mathbf{r}}^t - p_{\mathbf{r}}^{t-1} - v^2 (\Delta t)^2 s_{\mathbf{r}}^t , \qquad (6)$$

where ∇^2 here denotes the discrete Laplace operator.

$$\nabla^{2} p(\mathbf{r}, t) = \frac{\partial^{2} p}{\partial x^{2}} + \frac{\partial^{2} p}{\partial z^{2}},$$

$$\approx \frac{1}{(\Delta x)^{2}} \sum_{i=-2}^{2} c_{i} p_{x+i,z}^{t} + \frac{1}{(\Delta z)^{2}} \sum_{i=-2}^{2} c_{i} p_{x,z+i}^{t}$$

$$+ O[(\Delta x)^{4} + (\Delta z)^{4}],$$
(14)

where $c_0 = -\frac{5}{2}, c_1 = \frac{4}{3}, c_2 = -\frac{1}{12}, c_i = c_{-i}$

Method

ParNeC 模式识别与神经计算研究组 PAttern Recognition and NEural Computing

Loss Function

The reconstruction loss of our UPFWI includes a pixel-wise loss and a perceptual loss as follows:

$$\mathcal{L}(p, \tilde{p}) = \mathcal{L}_{pixel}(p, \tilde{p}) + \mathcal{L}_{perceptual}(p, \tilde{p}),$$
(8)

where p and \tilde{p} are input and reconstructed seismic data, respectively. The pixel-wise loss \mathcal{L}_{pixel} combines ℓ_1 and ℓ_2 distance as:

$$\mathcal{L}_{pixel}(\boldsymbol{p}, \tilde{\boldsymbol{p}}) = \lambda_1 \ell_1(\boldsymbol{p}, \tilde{\boldsymbol{p}}) + \lambda_2 \ell_2(\boldsymbol{p}, \tilde{\boldsymbol{p}}), \tag{9}$$

where λ_1 and λ_2 are two hyper-parameters to control the relative importance. For the perceptual loss $\mathcal{L}_{perceptual}$, we extract features from conv5 in a VGG-16 network (Simonyan & Zissermar, 2015) pretrained on ImageNet (Krizhevsky et al., 2012) and combine the ℓ_1 and ℓ_2 distance as:

$$\mathcal{L}_{perceptual}(\boldsymbol{p}, \tilde{\boldsymbol{p}}) = \lambda_3 \ell_1(\phi(\boldsymbol{p}), \phi(\tilde{\boldsymbol{p}})) + \lambda_4 \ell_2(\phi(\boldsymbol{p}), \phi(\tilde{\boldsymbol{p}})), \tag{10}$$

where $\phi(\cdot)$ represents the output of conv5 in the VGG-16 network, and λ_3 and λ_4 are two hyperparameters. Compared to the pixel-wise loss, the perceptual loss is better to capture the region-wise structure, which reflects the waveform coherence. This is crucial to boost the overall accuracy of velocity maps (e.g. the quantitative velocity values and the structural information).

Experiment

Supervision	Mathod	FlatFault			CurvedFault		
Supervision	Wiethod	MAE↓	MSE ↓	SSIM ↑	MAE↓	MSE↓	SSIM ↑
	InversionNet	15.83	2156.00	0.9832	23.77	5285.38	0.9681
Supervised	VelocityGAN	16.15	1770.31	0.9857	25.83	5076.79	0.9699
	H-PGNN+ (our implementation)	12.91	1565.02	0.9874	24.19	5139.60	0.9685
Unsupervised	UPFWI-24K (ours)	16.27	1705.35	0.9866	29.59	5712.25	0.9652
	UPFWI-48K (ours)	14.60	1146.09	0.9895	23.56	3639.96	0.9756

Table 1: Quantitative results evaluated on OpenFWI in terms of MAE, MSE and SSIM. Our UPFWI yields comparable inversion accuracy comparing to supervised baselines. For H-PGNN+, we use our network architecture to replace the original one reported in their paper, and an additional perceptual loss between seismic data is added during training.

Figure 4: Comparison of different methods on inverted velocity maps of FlatFault (top) and CurvedFault (bottom). For FlatFault, our UPFWI-48K reveals more accurate details at layer boundaries and the slope of the fault in deep region. For CurvedFault, our UPFWI reconstructs the geological anomalies on the surface that best match the ground truth.

Experiment

Ablation study

Loss			Velocity Error			Seismic Error		
pixel- ℓ_2	pixel- ℓ_1	perceptual	MAE↓	MSE ↓	SSIM ↑	MAE↓	MSE ↓	SSIM ↑
~			32.61	10014.47	0.9735	0.0167	0.0023	0.9978
~	~		21.71	2999.55	0.9775	0.0155	0.0025	0.9977
~	~	~	16.27	1705.35	0.9866	0.0140	0.0021	0.9984

Table 2: Quantitative results of our UPFWI with different loss function settings.

Network	MAE	MSE↓	SSIM↑	
CNN	16.27	1705.35	0.9866	
ViT	41.44	11029.01	0.9461	
MLP-Mixer	22.32	4177.37	0.9726	

ParN_eC

模式识别与神经计算研究组 PAttern Recognition and NEural Computing

Table 4: Quantitative results of our UP-FWI with different architectures.

Thanks