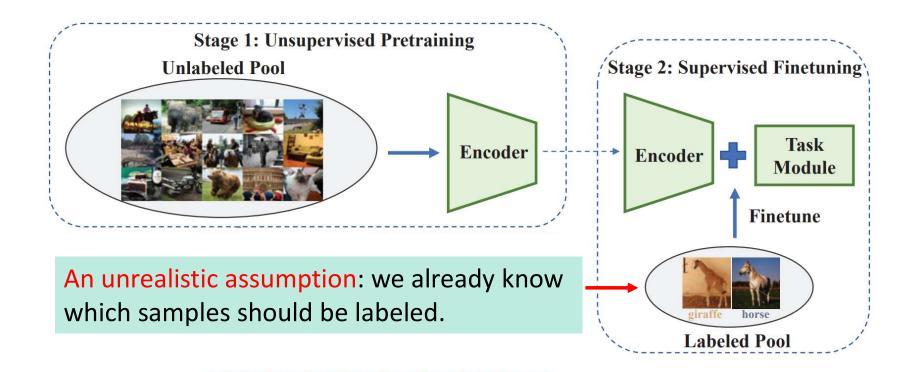


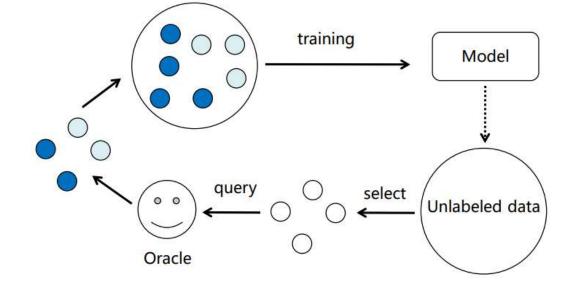
Active Finetuning: Exploiting Annotation Budget in the Pretraining-Finetuning Paradigm

Yichen Xie¹, Han Lu², Junchi Yan², Xiaokang Yang², Masayoshi Tomizuka¹, Wei Zhan¹ ¹ University of California, Berkeley ² Shanghai Jiao Tong University {yichen_xie,tomizuka,wzhan}@berkeley.edu,{sjtu_luhan,yanjunchi,xkyang}@sjtu.edu.cn

CVPR 2023



Active Learning



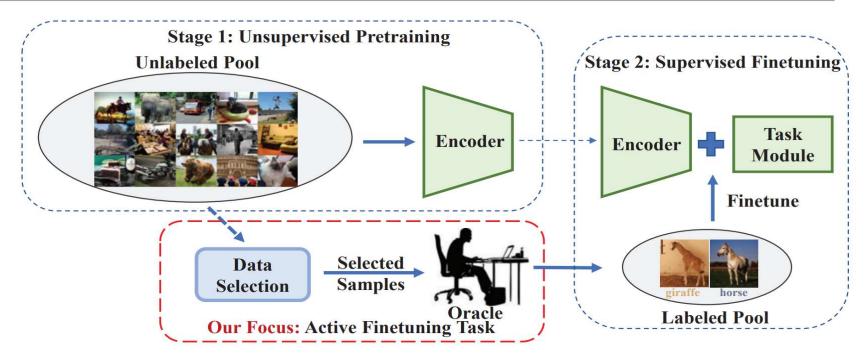
Goal: query less for more.

Uncertainty-based sampling

- Least-confidence
- Margin
- Entropy
- MC-dropout
- Diversity-based sampling
 - CoreSet

- ✓ Challenges: more limited annotation proportion (e.g., <10%).
 - *From-scratch training* does not fit the pretraining-finetuning paradigm.
 - *Batch-selection strategy* leads to harmful bias inside the selection process.

Active Finetuning



✓ Differences:

- The size of the sampled subset is relatively small.
- Access to the pretrained model is available.
- No access to any labels before data selection.
- Selected samples are directly applied to the finetuning of the pretrained model.

Data Selection with Parametric Model

 \mathcal{X} : is the data space \mathbb{R}^C : is the normalized high dimensional feature space $f(\cdot; w_0): \mathcal{X} \to \mathbb{R}^C$: is a DNN model with pretrained weight w_0 is given

$$\mathcal{P}^{u} = \{x_{i}\}_{i \in [N]} \sim p_{u}: \text{ is a large unlabeled data pool}$$
Sampling strategy
$$\mathcal{S} = \{s_{j} \in [N]\}_{j \in [B]}$$

$$\mathcal{P}^{u}_{S} = \{x_{s_{j}}\}_{j \in [B]}: \text{ is the target subset} \xrightarrow{\{y_{s_{j}}\}_{j \in [B]}} \in \mathcal{Y}: \text{ are the corresponding labels}$$

$$\mathcal{P}^{l}_{S} = \{x_{s_{j}}, y_{s_{j}}\}_{j \in [B]}: \text{ is the labeled data pool for supervised finetuning}} \qquad w_{S}$$
The goal of active finetuning is to find \mathcal{S}_{opt} minimizing the expectation model error.
$$\mathcal{S}_{opt} = arg \min_{\mathcal{S}} E_{x,y \in \mathcal{X} \times \mathcal{Y}}[error(f(x; w_{S}), y)]$$

Data Selection with Parametric Model

□ Samples are selected under the guidance two basic intuitions:

- Bringing close the distributions between the selected subset \mathcal{P}^u_S and the original pool $\mathcal{P}^u \sim p_u$
- Maintaining the diversity of \mathcal{P}_S^u

$$p_u(x) \rightarrow p_{f_u}(x) \longrightarrow f_i = f(x_i; w_0)$$
: is the normalized feature $\longrightarrow \mathcal{F}^u = \{f_i\}_{i \in [N]}$

 \square Our goal is to find the optimal selection strategy S as:

$$S_{opt} = \arg\min_{S} D(p_{f_u}, p_{f_s}) - \lambda \mathcal{R}(\mathcal{F}_{S}^u) \longrightarrow S$$
 is discrete selection strategy

$$p_{f_S}(x) \to p_{\theta_S}(x), f_S = \{f_{S_i}\}_{i \in [B]}, \theta_S = \{\theta_S^j\}_{j \in [B]}$$

D The goal is written as:

$$\theta_{\mathcal{S},opt} = \arg\min_{\theta_{\mathcal{S}}} D(p_{f_u}, p_{\theta_{\mathcal{S}}}) - \lambda \mathcal{R}(\theta_{\mathcal{S}}) \ s.t. \ ||\theta_{\mathcal{S}}^j||_2 = 1$$

Parametric Model Optimization

 \square Consider the parametric model p_{θ_s} as a mixture model with *B* components:

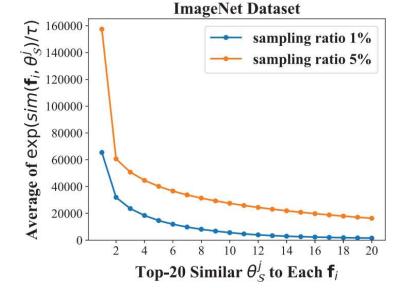
$$p_{\theta_{\mathcal{S}}}(\mathbf{f}) = \sum_{j=1}^{B} \phi_j p(\mathbf{f}|\theta_{\mathcal{S}}^j) \qquad \sum_{j=1}^{B} \phi_j = 1 \qquad p(\mathbf{f}|\theta_{\mathcal{S}}^j) = \frac{\exp(sim(\mathbf{f},\theta_{\mathcal{S}}^j)/\tau)}{Z_j}$$

D For each $f_i \in \mathcal{F}^u$, there exists a $\theta_S^{c_i}$ most similar (and closest) to f_i :

 $c_i = \arg\max_{j\in[B]} sim(\mathbf{f}_i, \theta_{\mathcal{S}}^j)$

Assumption 1 $\forall i \in [N], j \in [B]$, if τ is small, the following far-more-than relationship holds that

$$\exp(sim(\mathbf{f}_i, \theta_{\mathcal{S}}^{c_i})/\tau) \gg \exp(sim(\mathbf{f}_i, \theta_{\mathcal{S}}^{j})/\tau), j \neq c_i$$
$$p(\mathbf{f}_i | \theta_{\mathcal{S}}^{c_i}) \gg p(\mathbf{f}_i | \theta_{\mathcal{S}}^{j}), j \neq c_i, j \in [B]$$



The parametric model p_{θ_s} for $f_i \in \mathcal{F}^u$ can be approximated as:

$$p_{\theta_{\mathcal{S}}}(\mathbf{f}) = \sum_{j=1}^{B} \phi_{j} p(\mathbf{f}|\theta_{\mathcal{S}}^{j}) \longrightarrow p_{\theta_{\mathcal{S}}}(\mathbf{f}_{i}) \approx \phi_{c_{i}} p(\mathbf{f}_{i}|\theta_{\mathcal{S}}^{c_{i}}) = \frac{\exp(sim(\mathbf{f}_{i},\theta_{\mathcal{S}}^{c_{i}})/\tau)}{Z_{c_{i}}/\phi_{c_{i}}} = \frac{\exp(sim(\mathbf{f}_{i},\theta_{\mathcal{S}}^{c_{i}})/\tau)}{\tilde{Z}_{c_{i}}}$$

$$p_{\theta_{\mathcal{S}}}(\mathbf{f}_{i}) \propto \exp(sim(\mathbf{f}_{i},\theta_{\mathcal{S}}^{c_{i}})/\tau)$$

D The two distributions p_{f_u} , p_{θ_s} can be brought close by minimizing the KL-divergence :

$$KL(p_{f_u}|p_{\theta_{\mathcal{S}}}) = \sum_{\mathbf{f}_i \in \mathcal{F}^u} p_{f_u}(\mathbf{f}_i) \log \frac{p_{f_u}(\mathbf{f}_i)}{p_{\theta_{\mathcal{S}}}(\mathbf{f}_i)} = \frac{E}{\mathbf{f}_i \in \mathcal{F}^u} \left[\log p_{f_u}(\mathbf{f}_i)\right] - \frac{E}{\mathbf{f}_i \in \mathcal{F}^u} \left[\log p_{\theta_{\mathcal{S}}}(\mathbf{f}_i)\right]$$

\Box Therefore, the first term in $\theta_{S,opt}$ is derived as:

$$D(p_{f_u}, p_{\theta_{\mathcal{S}}}) = -\underbrace{E}_{\mathbf{f}_i \in \mathcal{F}^u} \left[sim(\mathbf{f}_i, \theta_{\mathcal{S}}^{c_i}) / \tau \right] \longrightarrow \text{Severe collapse problem}$$

An extra regularization term is needed to ensure the diversity of selected subset.

\Box The second term in $\theta_{S, opt}$ is derived as :

$$R(\theta_{\mathcal{S}}) = -\frac{E}{j \in [B]} \left[\log \sum_{k \neq j, k \in [B]} \exp\left(sim(\theta_{\mathcal{S}}^{j}, \theta_{\mathcal{S}}^{k}) / \tau\right) \right]$$

 \Box At this point, we can solve $\theta_{S,opt}$ by optimizing the following loss function continuously:

$$L = D(p_{f_u}, p_{\theta_S}) - \lambda \cdot R(\theta_S)$$

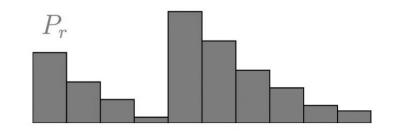
= $- \underset{\mathbf{f}_i \in \mathcal{F}^u}{E} [sim(\mathbf{f}_i, \theta_S^{c_i})/\tau] + \underset{j \in [B]}{E} \left[\log \sum_{k \neq j, k \in [B]} \exp\left(sim(\theta_S^j, \theta_S^k)/\tau\right) \right]$
\square Find feature $\{f_{S_i}\}_{i \in [B]}$ with the highest similarity to θ_S^j :
$$\mathbf{f}_{s_j} = \arg \max_{\mathbf{f}_k \in \mathcal{F}^u} sim(\mathbf{f}_k, \theta_S^j)$$

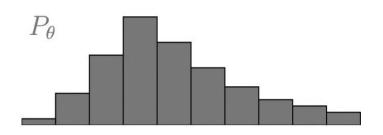
 $\{\mathbf{x}_{s_j}\}_{j \in [B]}$

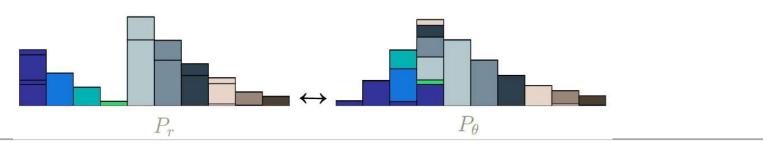
Relation to Earth Mover's Distance

推土机距离

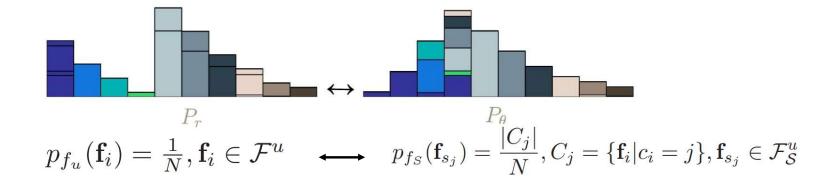
- 如果我们将分布想象为两个有一定存土量的土堆,每个土堆维度为 N, 那么 EMD 就是将一个土堆转换为另一个土堆所需的最小总工作量。工作 量的定义是单位泥土 的总量乘以它移动的距离。两个离散的土堆分布记 作 P_r 和 P_θ,以以下两个任意的分布为例。
- **直观理解**, 土堆 *P_r* 和 *P_θ*其中的单个柱条记为, *P_r(x)* 和 *P_θ(y)*, 每一个 *P_r(x)*就是当前 *x* 位置土的存量, *P_θ(x)* 指的是最终 *x* 位置要存放的土量。
 - 如果 $P_r(x) > P_{\theta}(x)$: 就要将 x 处多余的一部分 $P_r(x) P_{\theta}(x)$ 土方 搬运到别处;
 - 如果 $P_r(x) < P_{\theta}(x)$: 就要从其他处搬一部分将部分到 x 处, 使得 x 处的土方存量为 $P_r(x)$ 。







Relation to Earth Mover's Distance



 \square The EMD between p_{f_u} , p_{f_s} is written as :

🗖 It

Method: ActiveFT

Algorithm 1: Pseudo-code for ActiveFT

Input: Unlabeled data pool $\{\mathbf{x}_i\}_{i \in [N]}$, pretrained model $f(\cdot; w_0)$, annotation budget B, iteration number T for optimization **Output:** Optimal selection strategy $S = \{s_j \in [N]\}_{j \in [B]}$ 1 for $i \in [N]$ do 2 $\lfloor \mathbf{f}_i = f(\mathbf{x}_i; w_0)$ /* Construct $\mathcal{F}^u = \{\mathbf{f}_i\}_{i \in [N]}$ based on \mathcal{P}^u , normalized to $||\mathbf{f}_i||_2 = 1$ */ 3 Uniformly random sample $\{s_j^0 \in [N]\}_{j \in [B]}$, and initialize $\theta_S^j = \mathbf{f}_{s_j^0}$ /* Initialize the parameter $\theta_S = \{\theta_S^j\}_{j \in [B]}$

based on
$$\mathcal{F}^{u}$$

4 for $iter \in [T]$ do Calculate the similarity between $\{\mathbf{f}_i\}_{i \in [N]}$ and 5 $\{\theta_{\mathcal{S}}^{j}\}_{j\in[B]}: Sim_{i,j} = \mathbf{f}_{i}^{\top}\theta_{\mathcal{S}}^{j}/\tau$ $MaxSim_i = \max_{i \in [B]} Sim_{i,i} = Sim_{i,c_i}$ 6 /* The Top-1 similarity between \mathbf{f}_i and $\theta_{s}^{j}, j \in [B]$ */ Calculate the similarity between θ_{S}^{j} and 7 $\theta_{S}^{k}, k \neq j$ for regularization: $RegSim_{j,k} = \exp(\theta_{S}^{j} \theta_{S}^{k}/\tau), k \neq j$ $Loss = -\frac{1}{N} \sum_{i \in [N]} MaxSim_i +$ 8 $\frac{1}{B}\sum_{i\in[B]}\log\left(\sum_{k\neq j}RegSim_{j,k}\right)$ /* Calculate the loss function in Eq. 11 $\theta_{\mathcal{S}} = \theta_{\mathcal{S}} - lr \cdot \nabla_{\theta_{\mathcal{S}}} Loss$ 9 /* Optimize the parameter through gradient descent */ $\theta_{S}^{j} = \theta_{S}^{j}/||\theta_{S}^{j}||_{2}, j \in [B]$ 10 /* Normalize the parameters to ensure $||\theta_{s}^{j}||_{2} = 1$ 11 Find \mathbf{f}_{s_j} closest to $\theta_{\mathcal{S}}^j$: $s_j = \arg \max_{k \in [N]} \mathbf{f}_k^\top \theta_{\mathcal{S}}^j$ for each $j \in |B|$

12 Return the selection strategy $S = \{s_j\}_{j \in [B]}$

*/

Table 1. **Image Classification Results:** Experiments are conducted on natural images with different sampling ratios. We report the mean and std over three trials. Explanation of N/A results ("-") is in our supplementary materials.

Methods	CIFAR10			CIFAR100			ImageNet		
Methods	0.5%	1%	2%	1%	2%	5%	10%	1%	5%
Random	77.3±2.6	82.2±1.9	88.9±0.4	14.9±1.9	24.3±2.0	50.8±3.4	69.3±0.7	45.1±0.8	64.3±0.3
FDS	64.5 ± 1.5	73.2 ± 1.2	81.4 ± 0.7	8.1±0.6	12.8 ± 0.3	16.9 ± 1.4	52.3±1.9	26.7 ± 0.6	55.5 ± 0.1
K-Means	83.0±3.5	85.9±0.8	89.6±0.6	17.6 ± 1.1	31.9 ± 0.1	42.4 ± 1.0	70.7 ± 0.3	-	-
CoreSet [38]	-	81.6±0.3	88.4±0.2		30.6±0.4	48.3±0.5	62.9±0.6	_	61.7±0.2
VAAL [39]		80.9±0.5	88.8 ± 0.3		24.6 ± 1.1	46.4 ± 0.8	70.1 ± 0.4	-	64.0±0.3
LearnLoss [48]		81.6±0.6	86.7±0.4	-	19.2 ± 2.2	38.2 ± 2.8	65.7 ± 1.1	1	63.2 ± 0.4
TA-VAAL [21]	24	82.6±0.4	88.7±0.2	_	34.7 ± 0.7	46.4 ± 1.1	66.8±0.5	-	64.3±0.2
ALFA-Mix [33]		83.4±0.3	89.6±0.2	-8	35.3 ± 0.8	50.4±0.9	69.9±0.6	-	64.5±0.2
ActiveFT (ours)	85.0±0.4	88.2 ±0.4	90.1 ±0.2	26.1 ±2.6	40.7 ±0.9	54.6 ±2.3	71.0 ±0.5	50.1 ±0.3	65.3 ±0.1

Table 2. Semantic Segmentation Results: experiments are conducted on ADE20k with sampling ratios 5%, 10%. Results are averaged over three trials.

Sel. Ratio	Random	FDS	K-Means	ActiveFT (ours)
5%	14.54	6.74	13.62	15.37±0.11
10%	20.27	12.65	19.12	21.60 ±0.40

Table 3. **Data Selection Efficiency:** We compare the time cost to select different percentages of samples from the CIFAR100 training set.

Sel. Ratio	K-Means	CoreSet	VAAL	LearnLoss	ours
2%	16.6s	1h57m	7h52m	20m	12.6 s
5%	37.0s	7h44m	12h13m	1h37m	21.9s
10%	70.2s	20h38m	36h24m	9h09m	37.3s

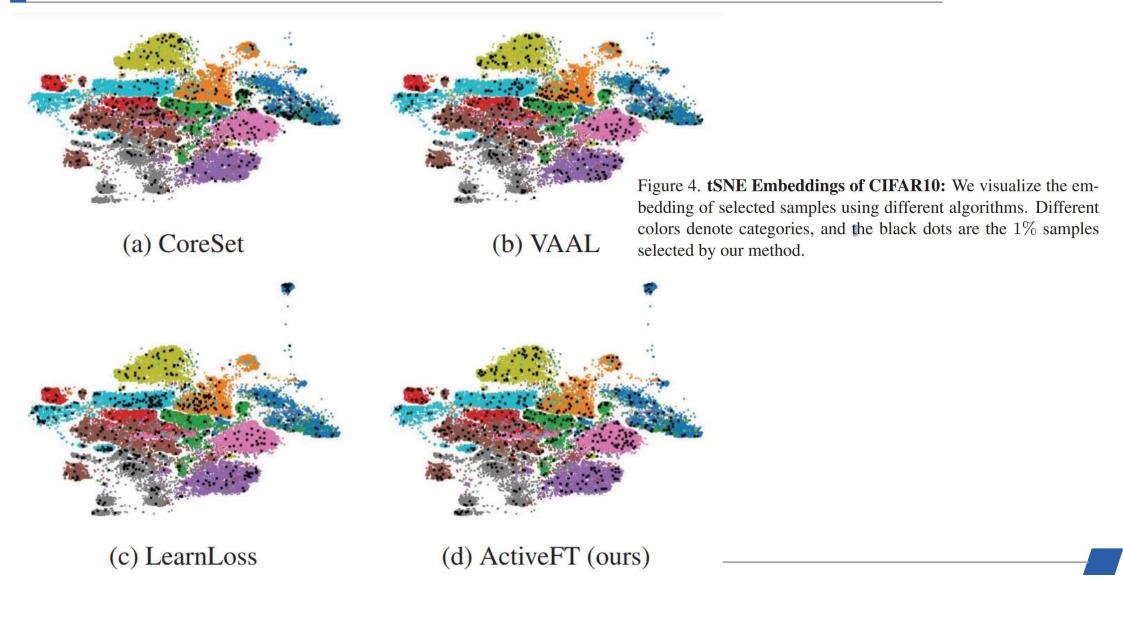


Table 4. Generality on Pretraining Frameworks and ModelArchitectures: We examine the performance of ActiveFT on dif-ferent pretraining frameworks and models on CIFAR-10.

(a) renormance on Derr-Sman rietramet with iDOT							
Methods	0.5%	1%	2%				
Random	81.7	83.0	89.8				
CoreSet [38]	-	82.8	89.2				
LearnLoss [48]	-	83.6	89.2				
VAAL [39]	20	85.1	89.3				
ActiveFT (ours)	87.6±0.8	88.3±0.2	90.9 ±0.2				
(b) Performance on ResNet-50 Pretrained with DINO							
Methods	0.5%	1%	2%				
Random	64.8	76.2	83.7				
CoreSet [38]	-3	70.4	83.2				
LearnLoss [48]		71.7	81.3				
VAAL [39]	-	75.0	83.3				
ActiveFT (ours)	68.5 ±0.4	78.6 ±0.7	84.9 ±0.3				

(a) Performance on DeiT-Small Pretrained with iBOT

Table 5. **Ablation Study:** We examine the effect of two modules in our method. Experiments are conducted on CIFAR100 with pretrained DeiT-Small model.

Table 6. **Effect of Temperatures:** We try different temperatures in our method. Experiments are conducted on CIFAR10 with pre-trained DeiT-Small model.

(a) c_i Update Manner			(b) Regularization Design			
Ratio	No-Update	Update	Ratio	S1	S2	ours
2%	20.6	40.7	2%	33.1	26.8	40.7
5%	52.8	54.6	5%	51.5	46.9	54.6
L	$= - \underset{\mathbf{f}_i \in \mathcal{F}}{E}$	$\sum_{u} \left[\log \frac{1}{2} \right]$	$\sum_{k \in [N]} e_k$	$\exp(\mathbf{f}_i^T \mathbf{\theta})$ $\exp(si$	$\frac{D_{\mathcal{S}}^{c_i}/ au}{2m(\mathbf{f}_k^T)}$	$\overline{ heta_{\mathcal{S}}^{c_{i}}/ au)} ight]$

Ratio	$\tau = 0.04$	$\tau = 0.07$	$\tau = 0.2$	$\tau = 0.5$
0.5%	85.6	85.0	84.1	83.5
1%	87.4	88.2	85.3	86.1
2%	90.3	90.1	89.6	89.0

