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I Motivation

Noisy label methods :

Explicitly model the noise signal. Noise modeling techniques aim to learn the
function that governs the noisy annotation process explicitly during training,
iInverting It during inference to obtain the clean labels.

Rely on implicit network dynamics to correct or ignore the wrong labels. Implicit-
dynamics based approaches operate under the assumption that wrong labels are
harder to learn than the correct labels.




I Introduction

Noisy label learning with privileged information (Pl):

Pl is defined as additional features available at training time but not at test time. Pl may include
information about the annotator, such as their ID or experience; or about the process itself, such as
the annotation duration or confidence.

However, current Pl methods can sometimes lag behind in performance with respect to no-Pl
baselines. The main reason is that these methods still try to learn the noise predictive distribution
p(¥|x) by marginalizing a in p(¥|x, a), when they should aim to learn the clean distribution p(y|x)

directly.

annotation time: 5 mins
confidence: 3%
annotator id: #00342
image id: #1748

Privileged Information
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Figure 1. Illustration of the architecture of Pi-DUAL. (Left) During training, Pi-DUAL fits the noisy target label 3y combining the
output of a prediction network (which takes the regular features @ as input) and a noise network (which takes the PI a as input). The
outputs of these sub-networks are weighted based on the output of a gating network (which also has a as input) and then passed through a

softmax operator to obtain the predictions. (Right) During inference, when only « is available, Pi-DUAL does not need access to PI and
simply uses the prediction network to predict the clean target v.
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Method Description

During training, Pi-DUAL factorizes its output logits into two terms, i.e.,

hG,c;b,'f,b(a:v a’) — [1 - 7¢(a)}f9(m) a5 ’}’¢(a)€¢(@),

Moreover, we augment the available PI features with a unique random identifier for each training
sample to help the network explain away the missing factors of the noise using this identifier. During
inference, when Pl is not available, Pi-DUAL relies solely on fg(x) to predict the clean label vy.

Previous methods tend to directly expose the no-Pl term f, (x) to the noisy labels, e.g., through
L(fg(x), ¥) which can thus lead to an overfitting to the noisy labels based on x. In contrast, Pi-DUAL
instead solves

' softmax (h . ).
9113511;11[’ Z L (softmax (he ¢ (x,a)),7) .
(x,7;@)eD

and never explicitly forces fy (x) to fit all y’s.
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I Method
Method Description

Our design allows the model to predict clean label for all training samples without incurring loss
penalty, as it can fit the residual noise signal with €¢(a).

Another important advantage of Pi-DUAL is that it explicitly learns to model noise signal in training
set. This makes it more interpretable than implicit-dynamics methods like TRAM, and puts it on par
with state-of-the-art noise modeling methods. However, as Pi-DUAL can leverage Pl to model noise
signal, it exhibits a much better noise detection performance than no-Pl methods, while at the same
time allowing it to scale to datasets with millions of datapoints, as it does not require to store
individual parameters for each sample in the training set to effectively learn the label noise.
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Stop Gradient
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Privileged
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Noise Detection

After training, we collect confidence estimates of the prediction network on the observed noisy labels
y, i.e., with softmax(fy(x))[¥] , for the training samples and threshold the confidences to distinguish
the correctly and incorrectly labeled examples.

If its confidence on an observed label is high, then it is highly likely that the sample is correctly
labeled, i.e., y =y; but if it is low, then probably the label y is wrong.
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Theoretical Insights

To show that Pi-DUAL is a robust estimator in the presence of label noise as its risk depends less
severely on the number of wrong labels, we study the theoretical behavior of the predictor

hg,, 4 (x, @) within a simplified linear regression setting. More specifically, we consider the setting
where the clean and noisy targets are respectively generated from two Gaussian distributions
N(xTw*, 02) and N(aTv*,o2) , for two weight vectors (w*, v*) parameterizing linearly their means.

We compare two estimators, Pi-DUAL and an ordinary least squares estimator (OLS) that ignores
the side information a.

Consider n samples from the above Gaussian models with targets y = y*Xw* + (I — y*")Av™* + ¢,
the contributions of the standard and Pl features are respectively Xw* € R™ and Av* € R", while
v* € {0,1}**" is a diagonal mask that indicates which contribution each entry in y corresponds to.
Denoting 6* = Xw* — Av™, it can be shown that the risk of the OLS estimator has a bias term
scaling with O((I —y*)6™), while the risk of Pi-DUAL using an arbitrary diagonal mask y € {0,1}"*"
has a bias term that depends on O((y* —y)d&™), which only scales with the number of
disagreements with respect to the ground-truth y*.



I Exp eriments

Table 2. Test accuracy of different methods on noisy label datasets with PI. We report mean and standard deviation accuracy over multiple
runs with the best hyperparameters and early-stopping.

CIFAR-10H CIFAR-10N CIFAR-100N ImageNet-PI ImageNet-PI

Methods (worst) (worst) (fine) (low-noise)  (high-noise)
Cross-entropy 51.1494 80.6.0.2 60.4. 5 68.2. ¢ 472 195
E'I.. ELR 48.941 4 86.6. , - 64.0 ., - -
ZD HET 508 1.4 819! 60.8-”,1 69*4;15_-_ 51.9;|'|,|!
SOP 5].3 1.9 85-0-1]_,\ ﬁl.g;ll_rﬁi T "
TRAM 649 L0.8 805 0.5 59? +0.3 694 0.2 540 0.1
E TRAM++ 668 0.3 839 0.2 61.1 +0).2 69.5 =0.0 53*8 +=0.3
AFM 640 L0N.6 820 L0.3 60»0 (.2 70*3 =0.0 55*3 FD.2

Pi-DUAL (Ours)  71.3. ., 84.9., 4 642 - 716 62.1.
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Table 3. AUC of different noise detection methods based on confidence thresholding of the network predictions on noisy labels or
thresholding of the gating network’s output (for Pi-DUAL).

CIFAR-10H CIFAR-10N CIFAR-100N ImageNet-PI ImageNet-PI
Methods : 3 ;
(worst) (worst) (fine) (low-noise) (high-noise)
Cross-entropy 0.810 0.951 0.883 0.935 0.941
ELR 0.745 0.968 0.876 - -
S0P 0.808 0.964 0.889 - -
TRAM++ 0.834 0.955 0.883 0.937 0.959
Pi-DUAL (conf.) 0.954 0.962 0.911 0.953 0.986
Pi-DUAL (gate) 0.982 0.808 0.726 0.952 0.986
CIFAR-10H CIFAR-100N ImageNet-PI (high noise)
W 401 i
&
= 50
£ 20
1] — r — . 1] - . — 1]
000 032 030 07 L0 000 025 050 0.7 100 0.00

Prediction confidence

Prediction confidence

Correct labels

Wrong labels

.25 (.50 0.75 1.0
Prediction confidence

Figure 2. Distribution for the prediction network’s confidence on the observed noisy labels for several datasets, separated by correctly and

wrongly labeled samples.
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Figure 3. Training curves of Pi-DUAL and cross-entropy baseline on different datasets. The first two rows show the training dynamics of
prediction network and noise network respectively.We plot separately the training accuracy on clean and wrong labels and test accuracy”.
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CIFAR-10H CIFAR-100N ImageNet-PI (high noise)
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Figure 4. Distributions of ., (a) over training samples with correct and wrong labels on several datasets.
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Figure 5. Examples of ImageNet-PI images that the gating network suggests are mislabeled. The first row shows samples with actually
wrongly annotated labels, and the second row shows examples with correct labels but assumed to be wrong by the gating network. Here,
“label"” denotes the annotation label ¢ and “pred" the prediction by fg.



I Ablation Study
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Table 4. Test accuracy of various ablation studies over Pi-DUAL on the different PI datasets.

CIFAR-10H CIFAR-10N CIFAR-100N

Ablations

ImageNet-PI

ImageNet-PI

(worst) (worst) (fine) (low-noise)  (high-noise)
Cross-entropy 5l.1.55 80.6.( 60.4. 05 68.219.2 47.2.1 0.9
Pi-DUAL 71.3.33 849 . | 64.2. - 71.6. 62.1.
(no gating network) 61.51; - 84.5. - 99.09 67.9.01 47.810.8
(no noise network) 9.7136 82.41 59.7+0.3 71.6. - 62.3. 5 ;
(gate in prob. space) 62.21, 3 81.6.105 59.4.4 4 T1.010.1 60.4 . ¢
(only random PI) 53.5+2.2 83.7+1.3 61.840.3 68.4-0.1 AT7.040.4
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