

Nanjing University of Aeronautics and Astronautics

Exploring data bias: from the known to the unknown

Prelude

- Bias is a reflection of **real-world structure**, but they <u>affect the fairness</u> of the model and may also lead to a <u>decrease in the model's generalizability</u> in real-world applications.
- Format: ٠
 - ✓ spurious correlation
 - Texture bias, \checkmark distribution shift background bias
 - ✓ Shortcut learning
- Way:
 - ✓ Inductive Bias [No free lunch theorem]
- Aspect:
 - Known bias ٠
 - Unknown bias ٠

Specific properties

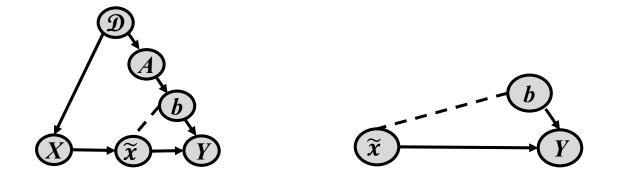
Specific context

Specific style

Image corruption

scene bias

Statistical aspects



$$P(y \mid do(x)) = \sum_{A} P(y \mid do(x), a) P(a \mid do(x)) = \sum_{A} P(y \mid x, a) P(a)$$

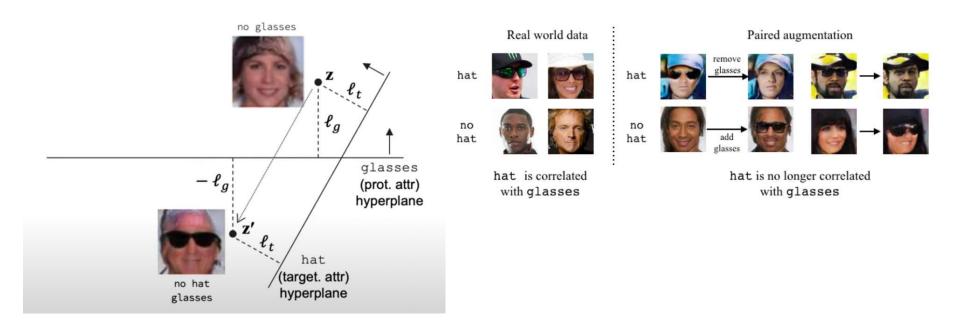
If b is a complete bias from X, then the goal is to <u>make b and Y as</u> <u>independent as possible</u>

- Random experiment
- P(Y|B) = P(Y)
- min $I(\tilde{X}; B)$ *i.e.* min $D_{KL}(p(\tilde{x}, b)||P(\tilde{x})P(b))$

Fair data space

Vikram V. Ramaswamy, Sunnie S. Y. Kim, Olga Russakovsky Princeton University {vr23, suhk, olgarus}@cs.princeton.edu

- Constructing a fair dataset by GAN-based data augmentation
 - Assume: linearly differentiable in semantic properties
 - Target: Learning interpretable operational directions, constructing complementary vectors



Fair sampling distribution

Maan Qraitem¹, Kate Saenko^{1,2}, Bryan A. Plummer¹ ¹Boston University ²MIT-IBM Watson AI Lab {mgraitem, saenko, bplum}@bu.edu

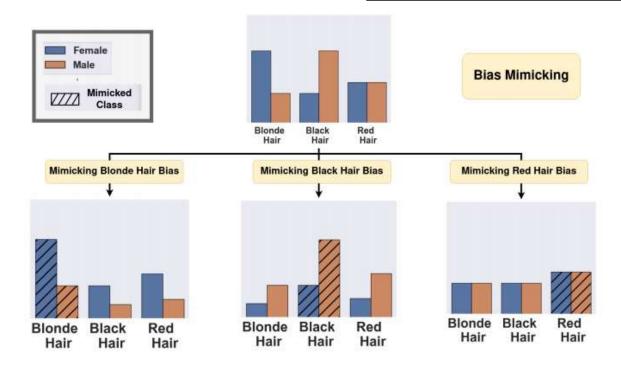
- We want to guarantee $P_D(Y|B) = P_D(Y)$
- Bias Mimicking: Given class "c": Ensure that is P_D(B|Y = c) "mimicked" in each other class

$$P_{d_{c}}(B = s | Y = c) = P_{d_{c}}(B = s | Y = c') \quad \forall s \in S.$$

$$P_{D}(B = s) = \sum_{c \in C} P_{D}(B = s | Y = c) P_{D}(Y = c)$$

$$P_{D}(B = s) = P_{D}(B = s | Y = c) \sum_{c' \in C} P_{D}(Y = c')$$

$$= P_{D}(B = s | Y = c)$$



Fair sampling distribution

Maan Qraitem¹, Kate Saenko^{1,2}, Bryan A. Plummer¹ ¹Boston University ²MIT-IBM Watson AI Lab {mgraitem, saenko, bplum}@bu.edu

How to Bias Mimick?

- constrain the solution space such that the solution retains **the most number** of samples.
- obtain the set of solutions using a linear program.

-	served class micked class		
s: bia	S		
<i>l</i> : cou	nt		
	4		Set of biases
max	$\sum_{s} l_{s}^{c'}$	ľ	Ţ
s.t.	$l_s^{c'} \leq D_{c',s} $		$s \in S$
	$\frac{l_s^{c'}}{\sum_s l_s^{c'}} = P_D$	(B=s Y=	$= c) s \in S$

Fair sampling distribution

Maan Qraitem¹, Kate Saenko^{1,2}, Bryan A. Plummer¹ ¹Boston University ²MIT-IBM Watson AI Lab {mgraitem, saenko, bplum}@bu.edu

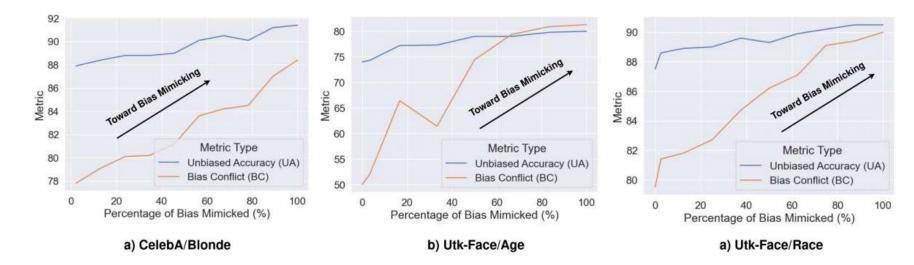
- Not used during inference Female Mimicked Class Male 1 Node Binary Prediction head Black Hair Red Blonde Non-Blond Hair Hair Hair 1 Node Binary Feature Prediction head **Bias-Mimicking** Binarize Encoder Blonde Black Hair Hair Red Black Hair Non-Blac 1 Node Binary Binarize Shared Weights Prediction head Non-Red Black Red Red Blonde Hai Hair Feature Stop Gradients 3 Node Multi-Class Encoder **Prediction Head** Black Red Hair
- How to train & inference?

- ✓ <u>Too many</u> additional parameters
- \checkmark The scores may <u>not be calibrated</u> with respect to each other

Results

Maan Qraitem¹, Kate Saenko^{1,2}, Bryan A. Plummer¹ ¹Boston University ²MIT-IBM Watson AI Lab {mgraitem, saenko, bplum}@bu.edu

- How sensitive is the model to the mimicking condition?
 - 0%: distribution remains the same



• 100%: Complete bias mimicking

The performance of the model **is highly dependent** on the degree of bias mimicry, particularly <u>the bias conflict groups</u>

Learning Not to Learn: Training Deep Neural Networks with Biased Data

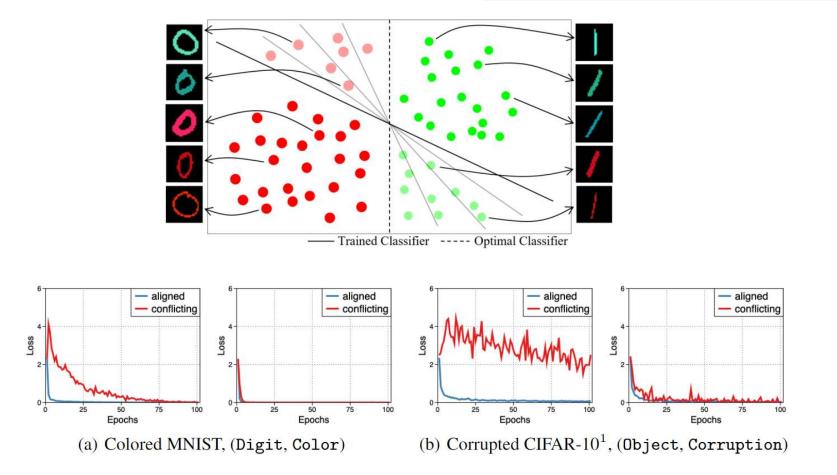
Fair network

Byungju Kim¹

a Kim¹ Hyunwoo Kim² Kyungsu Kim³ Sungjin Kim³ Junmo Kim¹ School of Electrical Engineering, KAIST, South Korea¹ Beijing Institute of Technology² Samsung Research³

• How does the bias affect model training?

The **malignant bias** attributes **are easier to learn** than the original task[5]



[4] Nam J et al. Learning from failure: De-biasing classifier from biased classifier.(NeurIPS2020).[5] Kim B et al. Learning not to learn: Training deep neural networks with biased data.(CVPR2020).

Learning Not to Learn: Training Deep Neural Networks with Biased Data

Fair network

Byungju Kim¹

im¹ Hyunwoo Kim² Kyungsu Kim³ Sungjin Kim³ Junmo Kim¹ School of Electrical Engineering, KAIST, South Korea¹ Beijing Institute of Technology² Samsung Research³

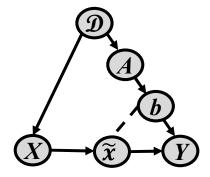
- How to unlearn the malignant bias?
 - **Minimize the mutual information** between feature embedding and target bias

 $\min I(\tilde{X}; B) \quad i.e.\min D_{KL}(p(\tilde{x}, b)||P(\tilde{x})P(b))$

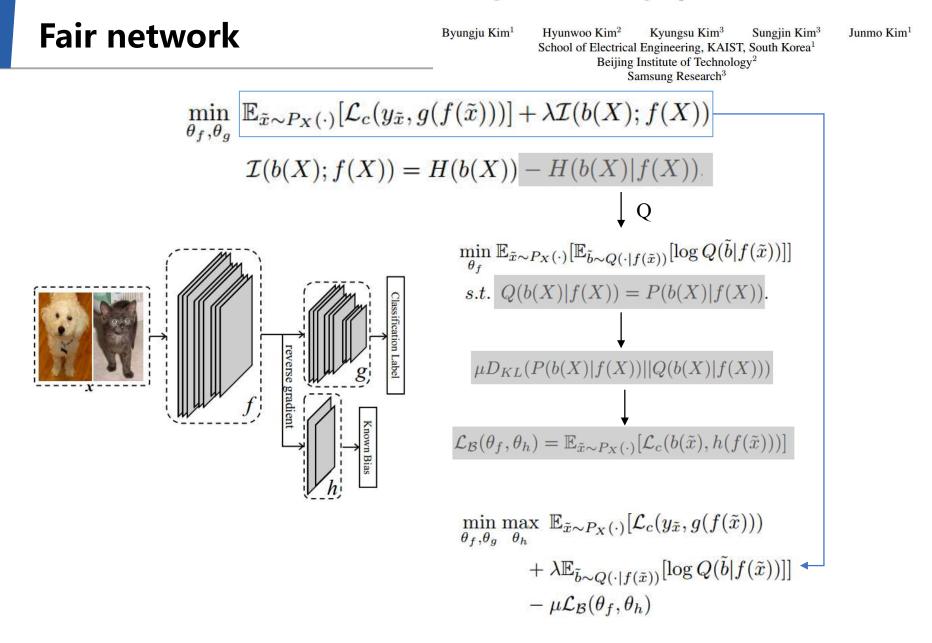
- malignant bias $\mathcal{I}(b(X^{train});Y) \gg \mathcal{I}(b(X^{test});Y) \approx 0$.
- Ultimate optimization goal

$$\min_{\theta_f, \theta_g} \mathbb{E}_{\tilde{x} \sim P_X(\cdot)} [\mathcal{L}_c(y_{\tilde{x}}, g(f(\tilde{x})))] + \lambda \mathcal{I}(b(X); f(X))$$

• Issues: How to capture the distribution of bias in a network?



Learning Not to Learn: Training Deep Neural Networks with Biased Data



What's more? ———Uncertainty Modeling and Optimization

The data distribution is p. Optimize θ to find the model $M(\theta)$ that makes the evaluation function l optimal

Ignoring uncertainty

Stochastic optimization (Known about p completely) Optimize θ to maximize the expected value of l under p

Robust optimization (Only basic information about p)

Find the optimal solution when p is the worst case

> Distributionally robust optimization (Extraordinarily known distributional characteristic

Finding the worst distribution function that satisfies the uncertain parameter features

ERM:
$$\hat{\theta}_{\text{ERM}} := \underset{\theta \in \Theta}{\operatorname{arg\,min}} \mathbb{E}_{(x,y) \sim \hat{P}}[\ell(\theta; (x, y))]$$

DRO: $\underset{\theta \in \Theta}{\min} \Big\{ \mathcal{R}(\theta) := \underset{Q \in \mathcal{Q}}{\sup} \mathbb{E}_{(x,y) \sim Q}[\ell(\theta; (x, y))] \Big\}$ e.g. *f*-divergence based

What's more? ———Uncertainty Modeling and Optimization

$$\begin{array}{ll} {\rm ERM:} & \hat{\theta}_{{\rm ERM}} := \mathop{\arg\min}_{\theta \in \Theta} \, \mathbb{E}_{(x,y) \sim \hat{P}}[\ell(\theta;(x,y))] \\ {\rm DRO:} & \mathop{\min}_{\theta \in \Theta} \Big\{ \mathcal{R}(\theta) := \mathop{\sup}_{Q \in \mathcal{Q}} \mathbb{E}_{(x,y) \sim Q}[\ell(\theta;(x,y))] \Big\} & & \\ {\rm Group \ DRO:} & \hat{\theta}_{{\rm DRO}} := \mathop{\arg\min}_{\theta \in \Theta} \Big\{ \hat{\mathcal{R}}(\theta) := \mathop{\max}_{g \in \mathcal{G}} \mathbb{E}_{(x,y) \sim \hat{P}_g}[\ell(\theta;(x,y))] \Big\} & & \\$$

Algorithm 1: Online optimization algorithm for group DRO

From known to unknown

• Still need to know a priori information about the bias



- How to trick unknown bias?
 - Unsupervised learning
 - Self-supervised learning
 - MLLM-based

Aspect 1 ——Clustering

Seonguk Seo¹ Joon-Young Lee³ Bohyung Han^{1,2} ¹ECE & ¹ASRI & ^{1,2}IPAI, Seoul National University ³Adobe Research {seonguk, bhhan}@snu.ac.kr jolee@adobe.com

> **Observation**:

For a <u>particular attribute (other than the target attribute)</u>, samples with **the same label** tend to have **similar representations** in the feature space of a fully trained model

> Motivation :

Define groups using **biased pseudo-attribute** information obtained through any **clustering algorithm** in the feature embedding space.

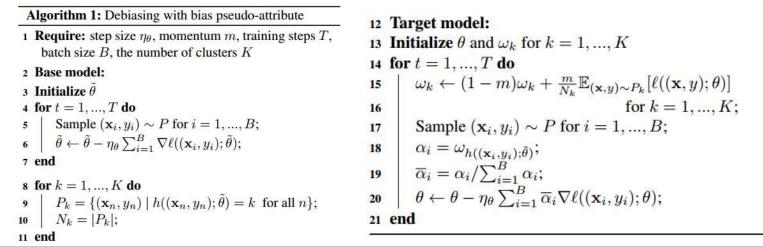
> Optimization goals :

$$\min_{\theta} \left\{ \mathbb{R}_{\mathcal{K}}(\theta) := \mathbb{E}_{(\mathbf{x}, y) \sim P} \left[\omega_{h((\mathbf{x}, y); \tilde{\theta})} \ell((\mathbf{x}, y); \theta) \right] \right\}$$

cluster membership

Seonguk Seo¹ Joon-Young Lee³ Bohyung Han^{1,2} ¹ECE & ¹ASRI & ^{1,2}IPAI, Seoul National University ³Adobe Research {seonguk, bhhan}@snu.ac.kr jolee@adobe.com

- Step1: Clustering the training samples in the feature embedding space of <u>the fully</u> <u>optimized base model</u>, assuming that each cluster corresponds to a bias pseudo-attribute
- **Step2: Weighting** between groups considering the size and average difficulty of each cluster



Aspect 2—Contrastive Approach

> **Observation**:

The **worst population accuracy** of the neural network in the false correlation case is closely related to its representation - i.e., the output of its last hidden layer - only to **the extent that it relies on true labels** rather than false attributes

> Motivation :

By **improving alignment** while keeping the class mean error low, we can help improve the worst group error for the class

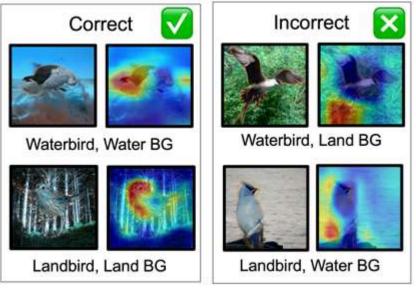
New sampling scheme

Samples with the same category but different spurious attributes as different "views" (anchors and positive samples) of the same category, and samples negative samples of data points with the same inferred spurious attributes but different categories

[†]Stanford University, [‡]Northeastern University {mzhang,nims,hongyang,cbfinn,chrismre}@cs.stanford.edu Corresponding author

Correct-N-Contrast: A Contrastive Approach for Improving Robustness to Spurious Correlations

Michael Zhang[†], Nimit S. Sohoni[†], Hongyang R. Zhang[‡], Chelsea Finn[†] & Christopher Ré[†]



Aspect 2—Contrastive Approach

Correct-N-Contrast: A Contrastive Approach for Improving Robustness to Spurious Correlations

Michael Zhang[†], Nimit S. Sohoni[†], Hongyang R. Zhang[‡], Chelsea Finn[†] & Christopher Ré[†] [†]Stanford University, [‡]Northeastern University

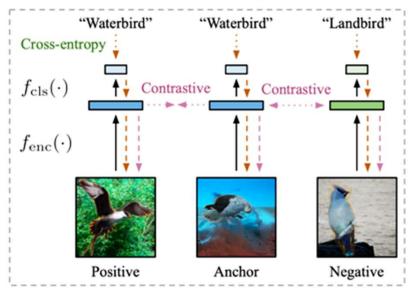
> {mzhang,nims,hongyang,cbfinn,chrismre}@cs.stanford.edu Corresponding author

Stage 1: ERM Training

- Train model with ERM to predict ground-truth labels from data
- Collect predictions of the trained ERM model on the *training data*
- o Get contrastive batches from predictions:

Stage 2: Supervised Contrastive Learning

 Train a new model with supervised contrastive loss + classification loss using contrastive batches



$$\hat{\mathcal{L}}(f_{\theta}; x, y) = \lambda \hat{\mathcal{L}}_{con}^{sup}(f_{enc}; x, y) + (1 - \lambda) \hat{\mathcal{L}}_{cross}(f_{\theta}; x, y)$$

$$\hat{\mathcal{L}}_{con}^{sup}(f_{enc}) = \hat{\mathcal{L}}_{con}^{sup}\left(x_{1}, \{x_{m}^{+}\}_{m=1}^{M}, \{x_{n}^{-}\}_{n=1}^{N}; f_{enc}\right) + \hat{\mathcal{L}}_{con}^{sup}\left(x_{1}^{+}, \{x_{i}\}_{i=1}^{M}, \{x_{n}^{\prime-}\}_{n=1}^{N}; f_{enc}\right) - \frac{1}{M} \sum_{m=1}^{M} \log \frac{\exp(z_{1}^{\top} z_{m}^{+} / \tau)}{\sum_{m=1}^{M} \exp(z_{1}^{\top} z_{m}^{+} / \tau) + \sum_{n=1}^{N} \exp(z_{1}^{\top} z_{m}^{+} / \tau)}$$

Aspect 2—Theoretical proof

> Motivation:

Reducing alignment losses can **narrow the gap** between the worst and average group losses

> Metrics design:

• Alignment loss

$$\hat{\mathcal{L}}_{\text{align}}(f_{\text{enc}}; g, g') = \frac{1}{|G|} \frac{1}{|G'|} \sum_{(x,y,a) \in G} \sum_{(x',y,a') \in G'} \|f_{\text{enc}}(x) - f_{\text{enc}}(x')\|_2$$

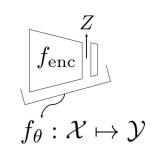
Degree to which samples with the same class but different spurious attributes map to neighborhood vectors

• Mutual information

$$\hat{I}(Y;Z) = \frac{1}{|Z|} \sum_{z \in Z} \sum_{y \in Y} p(y \mid z) \log \frac{p(y \mid z)}{p(y)}$$

Approximate MI between model-learned representations and labels





Correct-N-Contrast: A Contrastive Approach for Improving Robustness to Spurious Correlations

Michael Zhang[†], Nimit S. Sohoni[†], Hongyang R. Zhang[‡], Chelsea Finn[†] & Christopher Ré[†] [†]Stanford University, [‡]Northeastern University {mzhang, nims, hongyang, cbfinn, chrismre}@cs.stanford.edu

Corresponding author

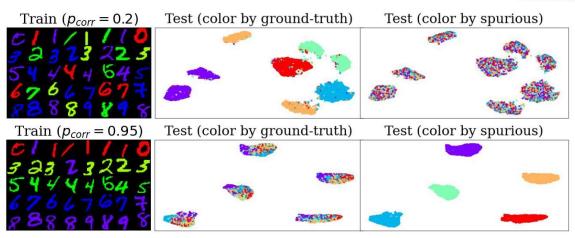
Aspect 2—Theoretical proof

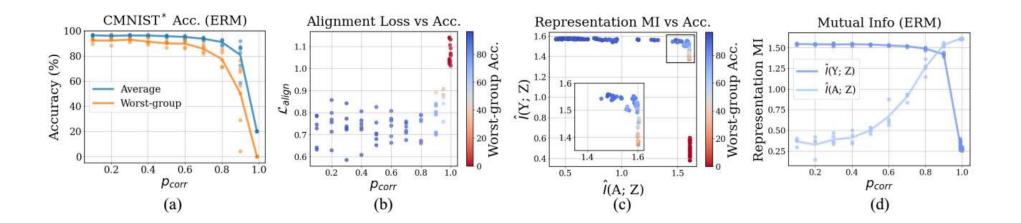
Correct-N-Contrast: A Contrastive Approach for Improving Robustness to Spurious Correlations

Michael Zhang[†], Nimit S. Sohoni[†], Hongyang R. Zhang[‡], Chelsea Finn[†] & Christopher Ré[†] [†]Stanford University, [‡]Northeastern University

{mzhang,nims,hongyang,cbfinn,chrismre}@cs.stanford.edu

Corresponding author





Aspect 2—Theoretical proof

Correct-N-Contrast: A Contrastive Approach for Improving Robustness to Spurious Correlations

Michael Zhang[†], Nimit S. Sohoni[†], Hongyang R. Zhang[‡], Chelsea Finn[†] & Christopher Ré[†] [†]Stanford University, [‡]Northeastern University

> {mzhang,nims,hongyang,cbfinn,chrismre}@cs.stanford.edu Corresponding author

Let $\mathcal{L}_{wg}(f_{\theta}; y)$ be the worst-group loss among groups in \mathcal{G}_{y} :

$$\mathcal{L}_{wg}(f_{\theta}; y) := \max_{g \in \mathcal{G}_{y}} \mathop{\mathbb{E}}_{(x, \tilde{y}, a) \sim P_{g}} \left[\ell(f_{\theta}(x), \tilde{y}) \right].$$

Let $\mathcal{L}_{avg}(f_{\theta}; y)$ be the average loss among groups in \mathcal{G}_y :

$$\mathcal{L}_{\operatorname{avg}}(f_{\theta}; y) := \mathop{\mathbb{E}}_{(x, \tilde{y}, a) \sim P: \forall a \in \mathcal{A}} \left[\ell(f_{\theta}(x), \tilde{y}) \right].$$

Additionally, let $\mathcal{L}_{align}(f_{\theta}; y)$ be the largest cross-group alignment loss among groups in \mathcal{G}_y :

$$\hat{\mathcal{L}}_{\text{align}}(f_{\theta}; y) := \max_{g \in \mathcal{G}_y, g' \in \mathcal{G}_y: g \neq g'} \hat{\mathcal{L}}_{\text{align}}(f_{\text{enc}}; g, g').$$

Theorem 3.1. In the setting described above, suppose the weight matrix of the linear classification layer W satisfies $||W||_2 \leq B$, for some B > 0. Suppose the loss function $\ell(x, y)$ is C_1 -Lipschitz in x and bounded from above by C_2 , for some $C_1 > \text{and } C_2 > 0$. Let n_g be the size of any group $g \in \mathcal{G}$ in the training set. Then, for any $\delta > 0$, with probability $1 - \delta$, the following holds for any $y \in \mathcal{Y}$:

$$\mathcal{L}_{wg}(f_{\theta}; y) - \mathcal{L}_{avg}(f_{\theta}; y)$$

$$\leq BC_1 \cdot \hat{\mathcal{L}}_{align}(f_{\theta}; y) + \max_{g \in \mathcal{G}_y} C_2 \sqrt{8 \log(|\mathcal{G}_y|/\delta)/n_g}.$$

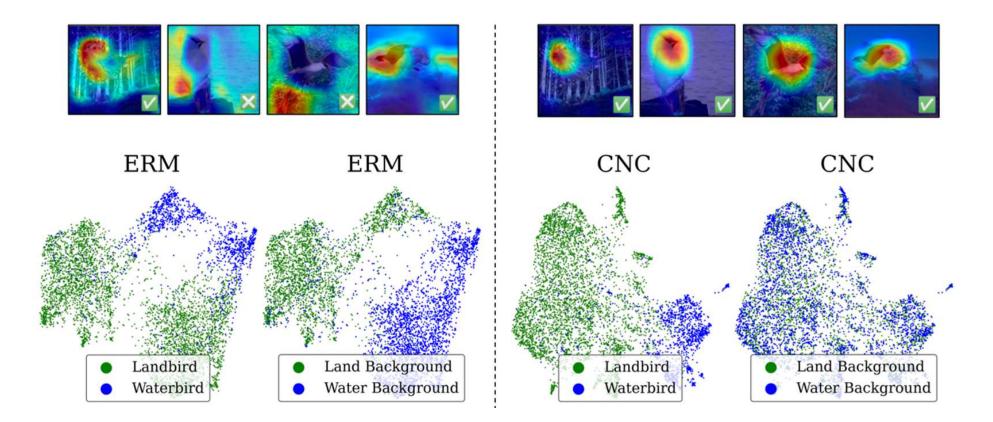
The **upper bound** of the <u>loss gap between the worst and</u> <u>average groups</u> is **linearly and positively** correlated with the <u>largest cross-group alignment loss</u>

Aspect 2—Results

Correct-N-Contrast: A Contrastive Approach for Improving Robustness to Spurious Correlations

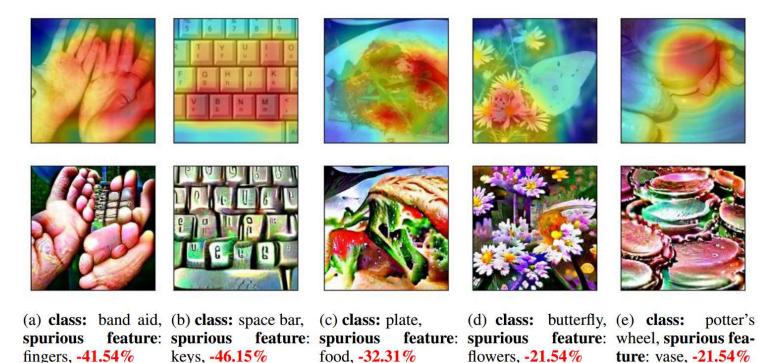
Michael Zhang[†], Nimit S. Sohoni[†], Hongyang R. Zhang[‡], Chelsea Finn[†] & Christopher Ré[†] [†]Stanford University, [‡]Northeastern University

> {mzhang,nims,hongyang,cbfinn,chrismre}@cs.stanford.edu Corresponding author

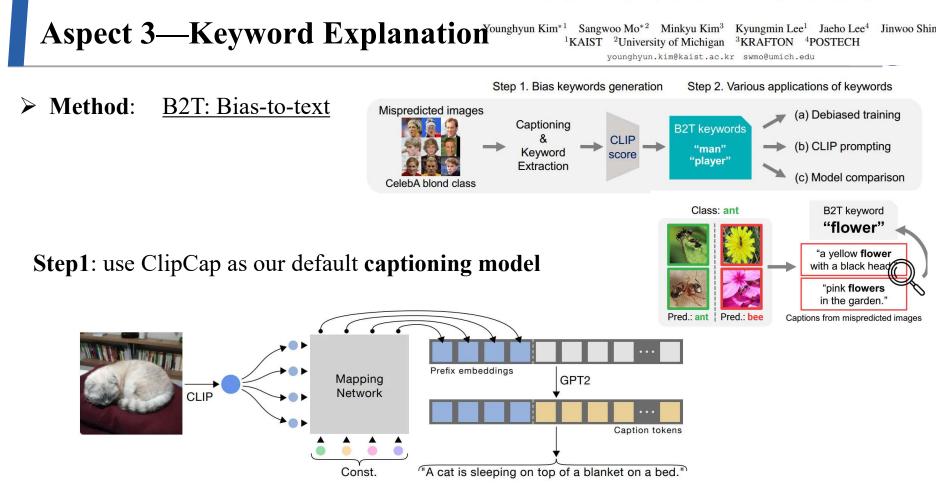


Aspect 3—Keyword Explanation^{*1}¹ Sangwoo Mo*² Minkyu Kim³ ²University of Michigan ³KRAFTON ⁴POSTECH ⁴POSTECH ³wmo@umich.edu

- > Motivation: <u>Unknown visual bias can't be interpreted</u>
 - Visualized spurious features that are **not human-readable**
 - Thus, they are hard to be directly utilized for debiasing



Discovering and Mitigating Visual Biases through Keyword Explanation



Step2: apply the YAKE algorithm to extract keywords

Text Preprocessing (Segmentation) --> Feature Extraction --> Individual Word Weight Calculation --> Candidate Keyword Generation

Discovering and Mitigating Visual Biases through Keyword Explanation

"player"

(c) Model comparison

CelebA blond class

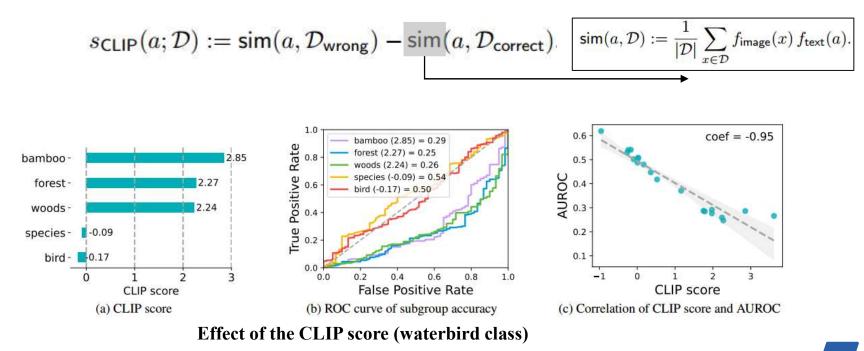
Keyword

Extraction

score

Step3: verify that keywords represent bias by CLIP score

To **measures the similarity** between the keywords and the incorrectly predicted images



Aspect 3—Keyword Explanation^{Younghyun Kim^{*1}} Sangwoo Mo^{*2} Minkyu Kim³ Kyungmin Lee¹ Jaeho Lee⁴ Jinwoo Shin ³KRAFTON ⁴POSTECH

younghyun.kim@kaist.ac.kr swmo@umich.edu

We first extract B2T keywords, then use them to various applications:

- Debiased training
 Model comparison CLIP promptingLabel diagnosis

	(a) Cele	ebA blond	(b) W	aterbirds	(c) Imag	eNet-R	(d) ImageNet-	-C snow / frost
Keyword	Ν	<i>l</i> an	Forest	Ocean	Illustration	Drawing	Snow	Window
Samples			14			1.5	-	
Actual	blond	blond	waterbird	landbird	backpack	white shark	airliner	American egret
Pred.	not blond	not blond	landbird	waterbird	maze	envelope	damselfly	quill
Caption	person, a man with a beard.	actor as a young man.	a bird in the forest.	a bird in the ocean.	hand drawn illustration of a backpack.	a drawing of a shark attacking []	airliner in the snow, photo.	a bird on a frozen window .
		(e) Dol	lar Street			(f) Ima	ageNet	
Keyword	Cave	Fire	Bucket	Hole	Flower	Playground	Baby	Interior
Samples		R	O					
Actual	wardrobe	stove	plate rack	toilet seat	ant	horizontal bar	stethoscope	monastery
Pred.	poncho	caldron	oil filter	wheelbarrow	bee	swing	baby pacifier	arched ceiling
Caption	the cave is full of surprises.	a fire in the kitchen.	a bucket of water and a few tools.	the hole in the ground.	a yellow flower with a black head.	person on a swing in the playground.	a newborn baby boy in a stethoscope.	the interior of the church.

B2T discovers spurious correlations and distributions shifts

• e.g.)

"man" for CelebA blond "forest" and "ocean" for Waterbirds "illustration" and

"drawing" for IN-R , "snow" and "window" for IN-C

Aspect 3—Keyword Explanation^{Younghyun Kim^{*1}} Sangwoo Mo^{*2} Minkyu Kim³ Kyungmin Lee¹ Jaeho Lee⁴ Jinwoo Shin ³KRAFTON ⁴POSTECH

younghyun.kim@kaist.ac.kr swmo@umich.edu

We first extract B2T keywords, then use them to various applications:

Debiased training

CLIP prompting

Model comparison Label diagnosis

Dataset	Dataset-wise Template	Class Name	
CelebA	 [class name] [class name] man [class name] player [class name] person [class name] artist [class name] comedy [class name] film [class name] actor [class name] face 	 Blond blond hair celebrity of blond hair Non blond non blond hair celebrity of non blond hair 	
Waterbirds	<pre> [class name] [class name] on the forest [class name] on a tree [class name] on a branch [class name] on a branch [class name] on the forest [class name] on the tree [class name] on the ocean [class name] on the lake [class name] on the lake [class name] on the water [class name] on the dock [class name] on the dock [class name] on the sunset [class name] in the sunset [class name] on the sky [class name] is on flies </pre>	 Landbird landbird Waterbird waterbird 	

Table 0 Descent designs for debisions many that electificant

Modify the cue by adding a keyword, e.g., "[class]'s photo" in [group], where the keyword represents the name of the group

- **Obtaining** the average prompts embedding for a class in all groups
- **Comparing** broader class embeddings for image classification

Aspect 3—Keyword Explanation^{Younghyun Kim*1} Sangwoo Mo*2 Minkyu Kim³ Kyungmin Lee¹ Jaeho Lee⁴ Jinwoo Shin ¹KAIST ²University of Michigan ³KRAFTON ⁴POSTECH

younghyun.kim@kaist.ac.kr swmo@umich.edu

We first extract B2T keywords, then use them to various applications:

- CLIP promptingLabel diagnosis
- Debiased trainingModel comparison

Keyword	Work		Supermarket		
Samples					
ViT-B	0	0	0	0	
RN50	0	x	0	X	
Actual (RN50)	dumbbell	dumbbell	shopping basket	shopping basket	
Pred (RN50)	dumbbell	horizontal bar	shop <mark>pin</mark> g basket	grocery store	
Caption	a set of dumbbells with weights.	person works out in the gym.	a basket full of food.	woman shopping in a supermarket	

□ Bias keywords can be used to analyze and compare different classifiers based on their keywords

e.g.) architecture: ResNet vs. ViT

Aspect 3—Keyword Explanation^{Younghyun Kim*1} Sangwoo Mo*2 Minkyu Kim³ Kyungmin Lee¹ Jaeho Lee⁴ Jinwoo Shin ¹KAIST ²University of Michigan ³KRAFTON ⁴POSTECH

younghyun.kim@kaist.ac.kr swmo@umich.edu

We first extract B2T keywords, then use them to various applications:

- CLIP prompting
 Label diagnosis
- Debiased trainingModel comparison

Keyword	Bee	Boar	Desk	Market
Samples	<u>an</u>			
Label	fly	pig	computer mouse	custard apple
Pred.	bee	wild boar	desktop computer	grocery store
Caption	a bee on a yellow flower.	wild boar in the forest.	the desk in the office.	fruit and vegetables a the market.

■ B2T can diagnose common labeling errors, such as mislabeling and label ambiguities

Nanjing University of Aeronautics and Astronautics

THANKS