

DIFFUSEMIX: Label-Preserving Data Augmentation with Diffusion Models

Khawar Islam1Muhammad Zaigham Zaheer2Arif Mahmood3Karthik Nandakumar21FloppyDisk.AI2Mohamed bin Zayed University of Artificial Intelligence3Information Technology University, Punjab1khawarr.islam@gmail.com2{zaigham.zaheer, karthik.nandakumar}@mbzuai.ac.ae3arif.mahmood@itu.edu.pk

CVPR 2024

Introduction

南京航空航天大學 Nanjing University of Aeronautics and Astronauti

Image-mixing-based data augmentation techniques ingeniously mix randomly selected natural images and their respective labels from the training dataset using a number of mixing combinations to synthesize new augmented images and labels.

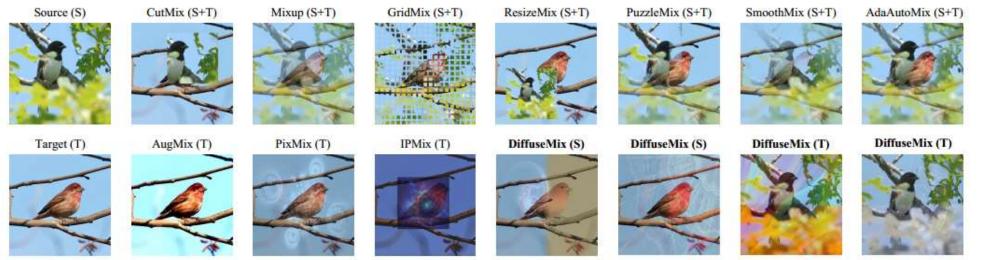


Figure 1. **Top row:** existing mixup methods *interpolate* two different training images [22, 49]. **Bottom row:** label-preserving methods. For each input image, DIFFUSEMIX employs *conditional prompts* to obtain generated images. The input image is then concatenated with a generated image to obtain a hybrid image. Each hybrid image is blended with a random fractal to obtain the final training image.

Introduction



Table 1. Comparison of different image mixing techniques: most methods utilize natural images as source and target except [42] using hidden state. DIFFUSEMIX uses a *generated* image produced by a diffusion model leveraging *conditional prompts* and a fractal image for augmentation.

_	Transf	Mixup ManifoldMixup	ManifoldMixup	CutMix SaliencyMix	StyleMix PuzzleMix	CoMixup PixMix	GuidMixup	Duppung			
	Input	[49]	[42]	[46]	[41]	[18]	[23]	[22]	[17]	[21]	DIFFUSEMIX
	Source image	1	1	1	1	1	1	1	1	1	×
sms	Target image	1	×	1	1	1	1	1	1	1	×
one	Fractal image	×	×	×	×	×	×	×	1	×	1
du	Textual Prompts	×	×	×	×	×	×	×	×	×	1
Co	Interpolation	1	1	×	×	1	×	×	1	1	1
	Concatenation	×	×	1	1	1	1	1	×	1	1
	Adversarial Robustness	1	1	1	1	1	1	1	1	×	1
Task	General Classification	1	1	1	1	1	1	1	1	1	1
	Fine Grained	×	×	×	×	×	×	×	×	1	1
	Transfer Learning	×	×	1	1	×	×	×	×	×	1
	Data Scarcity	×	×	×	×	×	×	×	×	1	1

Overall framework of DIFFUSEMIX

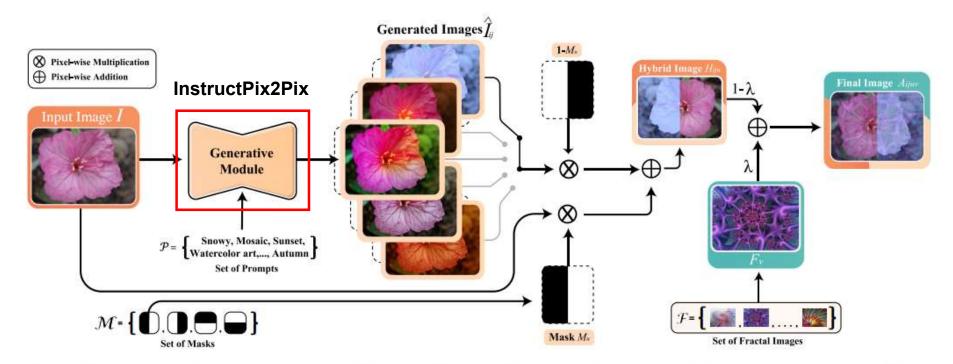
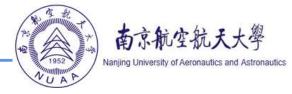


Figure 2. Architecture of the proposed DIFFUSEMIX approach. An input image and a randomly selected prompt are input to a diffusion model to obtain a generated image. Input and generated images are concatenated using a binary mask to obtain a hybrid image. A random fractal image is finally blended with this hybrid image to obtain the augmented image.



Fractal images is the images generated through fractal geometry that exhibits complex self-similarity and infinite detail.

The generation of fractal images usually relies on simple iterative algorithms.

(a) Autumnal Fractal Patterns

(b) Winter Wonderland

(d) Ukiyo-e Inspired Fractal

(e) Autumn Reimagined

(f) Snowflake Elegance

(g) Dusk's Fractal Canvas

(h) East Meets West

(i) Seasonal Shifts

(j) Frozen Fractal Patterns

Generation

The generation step consists of a pretrained diffusion model that takes a prompt from a predefined set of k prompts, along with the input image I_i and produces an augmented counterpart image \hat{I}_{ij} .

Concatenation

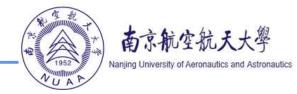
Concatenate a portion of the original input image with its counterpart generated image by using a randomly selected mask:

$$H_{iju} = (\hat{I}_{ij} \odot M_u) + (I_i \odot (\mathbf{1} - M_u)).$$

Fractal Blending

A randomly selected fractal image is blended to the hybrid image with a blending factor λ as:

$$A_{ijuv} = \lambda F_v + (1 - \lambda)H_{iju},$$





'autumn', 'snowy', 'sunset', 'watercolor art', 'rainbow', 'aurora', 'mosaic', 'ukiyo-e', 'a sketch with crayon'

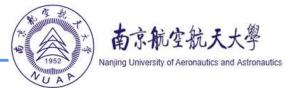
The overall augmentation process of **DIFFUSEMIX** can be represented as:

 $A_{ijuv} = (1 - \lambda)(I_i \odot M_u + \hat{I}_{ij} \odot (1 - M_u)) + \lambda F_v,$



Algorithm 1 DIFFUSEMIX

Require: $I_i \in \mathcal{D}$ training images dataset, m: number of
augmented images, $p_j \in \mathcal{P}$ set of prompts, $M_u \in \mathcal{M}$
set of masks, $F_v \in \mathcal{F}$ library of fractal images, λ : blend
ratio
Ensure: \mathcal{D}' : <i>m</i> Augmented images
1: $\mathcal{D}' \leftarrow \emptyset$
2: for each image I_i in \mathcal{D} do
3: for a in $\{1:m\}$ do
4: Randomly select prompt p_j from \mathcal{P}
5: Generate image: $\hat{I}_{ij} \leftarrow \mathcal{G}(I_i, p_j)$
6: Randomly select mask M_u from \mathcal{M}
7: Hybrid image: $H_{iju} \leftarrow M_u \odot I_i + (1 - M_u) \odot \hat{I}_{ij}$
8: Randomly select F_v from \mathcal{F}
9: Blended image: $A_{ijuv} \leftarrow (1 - \lambda)H_{iju} + \lambda F_v$
10: Add A_{ijuv} to \mathcal{D}'
11: end for
12: end for
13: return <i>D</i> ′



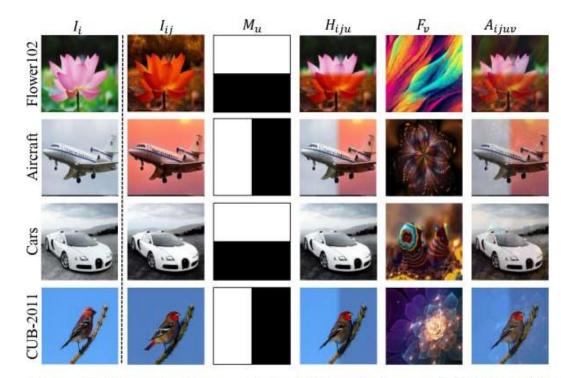


Figure 4. Example images from different stages of DIFFUSEMIX: input image (I_i) , generated image (\hat{I}_{ij}) , mask (M_u) , hybrid image (H_{iju}) , fractal image (F_v) , and final augmented image (A_{ijuv}) .

Table 2. Top-1 and Top-5 accuracy on general classification task of Table 3. Top-1 / Top-5 performance on ImageNet-1K PreactResNet-18 trained from scratch for 300 epochs following the results of dataset benchmark when trained on ResNet-50 for 100 Kang and Kim [21]. Extended table can be seen in Appendix 7 Table 12.

Method	Tiny-Imag	geNet-200	CIFAR-100		
Method	Top-1 (%)	Top-5 (%)	Top-1 (%)	Top-5 (%)	
Vanilla _(CVPR'16) [14]	57.23	73.65	76.33	91.02	
SaliencyMix(ICLR'21) [41]	56.54	76.14	79.75	94.71	
Guided-SR(AAAI'23) [21]	55.97	74.68	80.60	94.00	
PuzzleMix(ICML'20) [23]	63.48	75.52	80.38	94.15	
Co-Mixup(ICLR'21) [22]	64.15	-	80.15	-	
Guided-AP(AAAI'23) [21]	64.63	82.49	81.20	94.88	
DIFFUSEMIX	65.77	83.66	82.50	95.41	

Adversarial Robustness

Table 4. FGSM error rates on CIFAR-100 and Tiny-ImageNet-200 datasets for PreactResNet-18, following [23].

Madaad	FGSM Error Rates (%)				
Method	CIFAR-100	Tiny-ImageNet-200			
Vanilla _(CVPR'16) [14]	23.67	42.77			
Mixup (ICLR'18) [49]	23.16	43.41			
Manifold (ICML'19) [42]	20.98	41.99			
CutMix (ICCV'19) [46]	23.20	43.33			
AugMix (ICLR'20) [15]	43.33	5 <u>0</u> 0			
PuzzleMix(ICML'20) [23]	19.62	36.52			
DIFFUSEMIX	17.38	34.53			

epochs for general classification task. An extended version of this table is provided in Appendix 7 Table 13.

Method	Top-1 (%)	Top-5 (%)
Vanilla _(CVPR'16) [14]	75.97	92.66
PixMix _(CVPR'22) [17]	77.40	-
PuzzleMix(ICML'20) [23]	77.51	93.76
GuidedMixup(AAAI'23) [21]	77.53	93.86
Co-Mixup (ICLR'21) [22]	77.63	93.84
YOCO(ICML'22) [13]	77.88	100
DIFFUSEMIX	78.64	95.32

Fine-Grained Visual Classification

Table 5. Top-1 (%) performance comparison on *fine-grained task* of ResNet-50. Extended comparisons are provided in Appendix 7 Table 14.

Method	Birds	Aircraft	Cars	
Vanilla _(CVPR'16) [14]	65.50	80.29	85.52	
RA(NIPS'20) [9]	-	82.30	87.79	
AdaAug(ICLR'22) [5]	-	82.50	88.49	
Mixup(ICLR'18) [49]	71.33	82.38	88.14	
CutMix(ICCV'19) [46]	72.58	82.45	89.22	
SnapMix(AAAP21) [19]	75.53	82.96	90.10	
PuzzleMix(ICML'20) [23]	74.85	82.66	89.68	
Co-Mixup _(ICLR'21) [22]	72.83	83.57	89.53	
Guided-AP(AAAI'23) [21]	77.08	84.32	90.27	
DIFFUSEMIX	79.37	85.76	91.26	

Transfer Learning

Table 8. Top-1 (%) accuracy of DIFFUSEMIX on *fine-tuning* experiments using ImageNet pretrained ResNet-50.

Method	Flower102	Aircraft	Cars	
Vanilla _(CVPR'16) [14]	94.98	81.60	88.08	
AA _(CVPR'19) [8]	93.88	83.39	90.82	
RA(NIPS'20) [9]	95.23	82.98	89.28	
Fast AA(NIPS'19) [31]	96.08	82.56	89.71	
AdaAug(ICLR'22) [5]	97.19	83.97	91.18	
DIFFUSEMIX	98.02	85.65	93.17	

Table 6. Top-1 (%) accuracy on *data scarcity* task of ResNet-18 on Flower102 dataset where only 10 random images per class are used. Extended comparisons are provided in Appendix 7 Table 15.

Data Scarcity

Method	Valid	Test
Vanilla (CVPR'16) [14]	64.48	59.14
SnapMix (AAAI'21) [19]	65.71	59.79
PuzzleMix (ICML'20) [23]	71.56	66.71
Co-Mixup (ICLR'20) [22]	68.17	63.20
GuidedMixup (AAAI'23) [21]	74.74	70.44
DIFFUSEMIX	77.14	74.12

Table 7. Ablation study using Stanford Cars (cars) and Flowers102 (Flow) datasets. Top-1 and Top-5 accuracies are reported with *dif-ferent combinations* of I_i : Input image, \hat{I}_{ij} : Generated images using prompts p_j , H_{iju} : Hybrid images using random mask M_u , and F_v : fractal images used to obtain final blended image A_{ijuv} .

	I_i	1	1	-	-	-	-
	\hat{I}_{ij}	-	-	1	1	-	
	H_{iju}	-	-	-	-	1	1
	F_v	-	1	-	1	-	1
Cars	Top-1	85.52	86.73	87.63	89.42	90.59	91.26
Ü	Top-5	90.34	92.38	90.23	91.57	96.73	99.96
Flow	Top-1	78.73	78.34	77.38	77.81	79.22	80.20
E	Top-5	94.38	94.91	93.15	93.24	94.38	95.40

Table 9. Ablation on the *effects of masking* in DIFFUSEMIXon Flower102 dataset. All variants yield notably superior results compared to vanilla on ResNet-50. However, best results are achieved when all four vertical and horizontal masks are used.

Mask	Top-1 (%)	Top-5 (%)
Vanilla _(CVPR'16) [14]	89.74	94.38
Ver Mask (1)	94.02	98.42
Hor + Ver Masks (🗖, 🖬)	94.27	99.03
Hor + Ver + Flipping (■, ■, ■, ■)	95.37	99.39

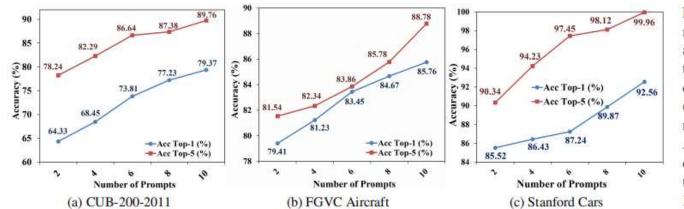


Figure 5. Effect of the number of prompts on overall performance. A detailed ablation study showcases the gains in Top-1 (%) and Top-5 (%) accuracy across CUB Birds-200, Aircraft, and Stanford Cars datasets with an increase in the number of prompts in DIFFUSEMIX.

Thanks