

Partial Label Learning with a Partner

Chongjie Si¹, Zekun Jiang¹, Xuehui Wang¹, Yan Wang², Xiaokang Yang¹, Wei Shen^{1*}

¹MoE Key Lab of Artificial Intelligence, AI Institute, Shanghai Jiao Tong University ²Shanghai Key Lab of Multidimensional Information Processing, East China Normal University {chongjiesi, zkjiangzekun.cmu, wangxuehui, xkyang, wei.shen}@sjtu.edu.cn; ywang@cee.ecnu.edu.cn

AAAI 2024

Background

Partial Label Learning (PLL)

Par N_p

Partial label learning (PLL), also known as superset-label learning or ambiguous label learning, is a representative weakly supervised learning framework which learns from inaccurate supervision information.

In partial label learning, each instance is associated with a set of candidate labels with only one being ground-truth and others being false positive.

As the ground-truth label of a sample conceals in the corresponding candidate label set, which can not be directly acquired during the training process, partial label learning task is a quite challenging problem.

Related work

To tackle the mentioned challenge, existing works mainly focus on disambiguation

Averaging-basedSuch as PL-KNN(2005) averages the candidate labels of neighboring samples to make the
prediction.approachesprediction.

Identification-based approaches The ground-truth label is treated as a latent variable and can be identified through an iterative optimization procedure such as EM. Labeling confidence based strategy is proposed in many state-of-the-art identification based approaches for better disambiguation.

Deep-learning basedPICO(2022) is a contrastive learning-based approach devised to tackle label ambiguity in
partial label learning.modelsPRODEN(2020) is a model where the simultaneous updating of the model and
identification of true labels are seamlessly integrated.

Motivation

However, a significant yet rarely studied question arises in the context of such algorithms: can a classifier correct a false positive candidate label (i.e., invalid candidate label) with a large or upward-trending labeling confidence at a later stage?

(a). For a false positive candidate label with a large labeling confidence, although its confidence may decrease properly, it could still be larger than the ground-truth one's.

(b). The labeling confidence of a false positive candidate label keeps increasing and becomes the largest, which misleads the final prediction.

Denote $X = [x_1, x_2, ..., x_n]^T \in \mathbb{R}^{n \times q}$ the sample matrix with *n* instances, and $Y = [y_1, y_2, ..., y_n]^T \in \{0, 1\}^{n \times l}$ the partial label matrix with *l* labels, where $y_{ij} = 1$ (resp. $y_{ij} = 0$) if the *j*-th label of x_i resides in (resp. does not reside in) its candidate label set. Given the partial label data set $\mathcal{D} = \{x_i, S_i | 1 \le i \le n\}$, the task of PLL is to learn a multi-class classifier $f: X \to Y$ based on \mathcal{D} .

Base Classifier

Suppose $P = [p_1, p_2, ..., p_n]^T \in \mathbb{R}^{n \times l}$ is the labeling confidence matrix.

P is initialized according to the base classifier. Otherwise, it is initialized as follows:

$$p_{ij} = \begin{cases} \frac{1}{\sum_{j} y_{ij}} & \text{if } y_{ij} = 1\\ 0 & \text{otherwise} \end{cases}$$

(1)
$$\sum_{j} p_{ij} = 1$$
,
(2) $0 \le p_{ij} \le y_{ij}$.

Denote the modeling output matrix $M = [m_1, m_2, ..., m_n]^T \in \mathbb{R}^{n \times l}$.

P is updated to P_1 through the following equation: $P_1 = \mathcal{T}_0(\mathcal{T}_Y(\alpha P + (1 - \alpha)M))$, where $\mathcal{T}_0(a) = \max\{0, a\}, \ \mathcal{T}_Y(a) = \min\{y_{ij}, a\}$.

ParN

Blurring Mechanism

 $Q_1 = \phi(e^k P_1) \odot Y$ where $\phi(A) = [\exp(a_{ij})]_{n \times l}$, *k* is a temperature parameter, \odot represents the Hadamard product.

Then normalize each row of Q_1 to satisfy the two constraints of labeling confidence, and output the result $O_1 \in \mathbb{R}^{n \times l}$.

Partner Classifier

Denote the non-candidate label matrix $\hat{Y} = [\hat{y}_{ij}]_{n \times l}$ where $\hat{y}_{ij} = 0$ (resp. $\hat{y}_{ij} = 1$) if the *j*-th label is (resp. is not) in the candidate label set of x_i .

$$\begin{split} \hat{P} &= [\hat{p}_1, \hat{p}_2, \dots, \hat{p}_n]^T \in \mathbb{R}^{n \times l} \text{ the non-candidate} \\ \text{labeling confidence matrix.} \\ (1) \sum_j \hat{p}_{ij} &= l - 1, \\ (2) \ \hat{y}_{ij} &\leq \hat{p}_{ij} \leq 1. \end{split}$$

Suppose $\widehat{W} = [\widehat{w}_1, \widehat{w}_2, ..., \widehat{w}_q]^T \in \mathbb{R}^{q \times l}$ is the weight matrix, the partner classifier is formulated as follows:

$$\min_{\hat{\mathbf{W}}, \hat{\mathbf{b}}, \mathbf{C}} \quad \left\| \mathbf{X} \hat{\mathbf{W}} + \mathbf{1}_n \hat{\mathbf{b}}^{\mathsf{T}} - \mathbf{C} \right\|_F^2 + \lambda \left\| \hat{\mathbf{W}} \right\|_F^2$$
s.t. $\hat{\mathbf{Y}} \leq \mathbf{C} \leq \mathbf{1}_{n \times l}, \mathbf{C} \mathbf{1}_l = (l-1)\mathbf{1}_n,$

Par

where $\hat{b} = [\hat{b}_1, \hat{b}_2, ..., \hat{b}_l]^T \in \mathbb{R}^l$ is the bias term, $1_n \in \mathbb{R}^n$ is an all one vectors, $1_{n \times l}$ is an all one matrix with size $n \times l$, λ is a hyper-parameter trading off these terms, $\|\widehat{W}\|_F$ is the Frobenius norm of the weight matrix.

 $C \in \mathbb{R}^{n \times l}$ represents non-candidate labeling confidence, which is a temporary variable only used for optimization in the partner classifier.

The Collaborative Term

The ideal state of p_i is one-hot. The ideal state of \hat{p}_i is zero-hot. So, the smallest value of $p_i^T \hat{p}_i$ is obtained when \hat{p}_i is zero-hot (p_i is one-hot).

$$\min_{\hat{\mathbf{W}},\hat{\mathbf{b}},\mathbf{C}} \quad \left\| \mathbf{X}\hat{\mathbf{W}} + \mathbf{1}_{n}\hat{\mathbf{b}}^{\mathsf{T}} - \mathbf{C} \right\|_{F}^{2} + \gamma \operatorname{tr}\left(\mathbf{O}_{1}\mathbf{C}^{\mathsf{T}}\right) + \lambda \left\| \hat{\mathbf{W}} \right\|_{F}^{2}$$

s.t.
$$\hat{\mathbf{Y}} \leq \mathbf{C} \leq \mathbf{1}_{n \times l}, \mathbf{C}\mathbf{1}_l = (l-1)\mathbf{1}_n,$$

where γ is a hyper-parameter.

The problem can be solved via an alternative and iterative manner.

The modeling output \widehat{M} for the training data is $\widehat{M} = X\widehat{W} + 1_n\widehat{b}^T$.

ParN.

The non-candidate labeling confidence \hat{P} is updated to \hat{P}_1 following

$$\hat{P}_1 = \mathcal{T}_1 \left(\mathcal{T}_{\hat{Y}} \left(\alpha \hat{P} + (1 - \alpha) \hat{M} \right) \right)$$

where $\mathcal{T}_1(m) = \min\{1, m\}, \ \mathcal{T}_{\hat{Y}}(m) = \max\{\hat{y}_{ij}, m\}.$

Then get $\hat{Q}_1 = \phi \left(e^k (1 - \hat{P}_1) \right) \odot Y$ and normalize to \hat{Q}_1 .

Update \widehat{W} and \widehat{b}

With *C* fixed, the problem w.r.t. \widehat{W} and \widehat{b} can be written as

$$\min_{\widehat{W},\widehat{b}} \left\| X \widehat{W} + \mathbf{1}_n \widehat{b}^T - C \right\|_F^2 + \lambda \left\| \widehat{W} \right\|_F^2$$

which is a least square problem with the closedform solution as

 $\widehat{W} = (X^T X + \lambda I_{n \times n}) X^T C$ $\widehat{b} = \frac{1}{n} \left(C^T \mathbf{1}_n - \widehat{W}^T X^T \mathbf{1}_n \right)$

where $I_{n \times n}$ is the identity matrix with the size $n \times n$ п.

Update C

With \widehat{W} and \widehat{b} fixed, the *C*-subproblem can be formulated as

 $\min_{C} \left\| X \widehat{W} + \mathbf{1}_n \widehat{b}^T - C \right\|_{E}^{2} + \gamma tr(O_1 C^T)$ $s.t.\hat{Y} \le C \le 1_{n \times l}, C1_l = (l-1)1_n$ For simplicity, O_1 is written as O and $J = X\widehat{W} +$ $1_n \hat{b}^T$.

Notice that each row of *C* is independent to other rows, therefore the problem can be solved row by row:

 $\min_{C_i} C_i^T C_i + (\gamma O_i - 2J_i)^T C_i$ s.t. $\hat{Y}_i \le C_i \le 1_n, C_i 1_l = l - 1$

The problem is a standard Quadratic Programming (QP) problem, which can be solved by off-the-shelf QP tools.

Kernel Extension

Denote $\phi(\cdot): \mathbb{R}^q \to \mathbb{R}^h$ the feature mapping that maps the feature space to some higher dimension space with h dimensions. Then we can rewrite as

$$\begin{split} \min_{\widehat{W},\widehat{b}} \|Z\|_F^2 + \lambda \|\widehat{W}\|_F^2\\ s.t.Z &= \Phi \widehat{W} + 1_n \widehat{b}^T - C\\ \text{where } \Phi &= [\phi(x_1), \phi(x_2), \dots, \phi(x_n)]. \end{split}$$

Deep-learning Extension

Denote a model in \mathcal{B} with such architecture $g(\cdot)$, specifically, an additional model $\hat{g}(\cdot)$ with the same architecture as $g(\cdot)$ is introduced as the partner classifier, which predicts the non-candidate labeling confidence of each sample.

$$\begin{aligned} \mathcal{L}_{com} &= -\sum_{i=1}^{l} (1 - y_i) \log(\hat{g}_i(x)) \\ \mathcal{L}_{col} &= -\sum_{i=1}^{l} p_i \hat{p}_i \\ \text{Here, } p &= \frac{\phi(e^k g(x)) \odot y}{(\phi(e^k g(x)) \odot y) \mathbf{1}_l'}, \\ \text{and } \hat{p} &= \mathbf{1}_l^T - \frac{\phi(e^k (1 - \hat{g}(x))) \odot y}{(\phi(e^k (1 - \hat{g}(x))) \odot y) \mathbf{1}_l}. \\ \text{The overall loss function is:} \\ \mathcal{L} &= \mathcal{L}_{ori} + \mathcal{L}_{com} + \mu \mathcal{L}_{col}. \end{aligned}$$

Experiment

模式识别与神经计算研究组 PAttern Recognition and NEural Computing

Approaches	Data set							
Approactics	FG-NET	Lost	MSRCv2	Mirflickr	Soccer Player	Yahoo!News	FG-NET(MAE3)	FG-NET(MAE5)
PL-CL	0.072 ± 0.009	0.710 ± 0.022	0.469 ± 0.016	0.647 ± 0.012	0.534 ± 0.004	0.618 ± 0.003	0.433 ± 0.022	0.575 ± 0.015
PL-CL-PLCP	$0.080 \pm 0.009 \bullet$	$0.763 \pm 0.020 \bullet$	$0.493 \pm 0.013 \bullet$	$0.665 \pm 0.011 \bullet$	$0.543 \pm 0.002 \bullet$	$0.625 \pm 0.002 \bullet$	0.447 ± 0.017 ●	$0.595 \pm 0.009 \bullet$
PL-AGGD	0.063 ± 0.010	0.690 ± 0.020	0.451 ± 0.023	0.610 ± 0.012	0.521 ± 0.004	0.605 ± 0.002	0.418 ± 0.020	0.562 ± 0.020
PL-AGGD-PLCP	$0.076 \pm 0.010 \bullet$	0.717 ± 0.020 •	0.473 ± 0.017 ●	$0.668 \pm 0.014 \bullet$	0.534 ± 0.005 •	$0.609 \pm 0.002 \bullet$	$0.441 \pm 0.020 \bullet$	0.581 ± 0.014 ●
SURE	0.052 ± 0.007	0.709 ± 0.022	0.445 ± 0.022	0.630 ± 0.022	0.519 ± 0.004	0.598 ± 0.002	0.356 ± 0.020	0.494 ± 0.021
SURE-PLCP	$0.076 \pm 0.011 \bullet$	0.719 ± 0.019 •	0.460 ± 0.020 ●	$0.657 \pm 0.020 \bullet$	$0.527 \pm 0.004 \bullet$	$0.606 \pm 0.002 \bullet$	$0.441 \pm 0.019 \bullet$	0.582 ± 0.016 ●
LALO	0.065 ± 0.010	0.682 ± 0.019	0.449 ± 0.016	0.629 ± 0.016	0.523 ± 0.003	0.601 ± 0.003	0.422 ± 0.023	0.566 ± 0.015
LALO-PLCP	0.076 ± 0.010 ●	0.701 ± 0.019 •	0.453 ± 0.015 •	$0.647 \pm 0.018 \bullet$	$0.529 \pm 0.004 \bullet$	$0.605 \pm 0.002 \bullet$	$0.443 \pm 0.020 \bullet$	0.583 ± 0.014 •
PL-SVM	0.043 ± 0.008	0.406 ± 0.033	0.389 ± 0.029	0.516 ± 0.022	0.412 ± 0.006	0.509 ± 0.006	0.314 ± 0.019	0.445 ± 0.016
PL-SVM-PLCP	$0.081 \pm 0.011 \bullet$	0.688 ± 0.029 ●	0.468 ± 0.025 ●	$0.607 \pm 0.023 \bullet$	$0.526 \pm 0.005 \bullet$	$0.609 \pm 0.002 \bullet$	0.439 ± 0.021 ●	0.583 ± 0.016 ●
PL-KNN	0.036 ± 0.006	0.300 ± 0.018	0.393 ± 0.014	0.454 ± 0.016	0.492 ± 0.003	0.368 ± 0.004	0.288 ± 0.014	0.440 ± 0.017
PL-KNN-PLCP	$0.076 \pm 0.009 \bullet$	$0.662 \pm 0.025 \bullet$	0.469 ± 0.016 ●	$0.607 \pm 0.023 \bullet$	$0.523 \pm 0.004 \bullet$	0.593 ± 0.004 •	$0.434 \pm 0.020 \bullet$	0.579 ± 0.016 ●
	Average Improveme	ent Ratio: PL-CL: 3.0	51% PL-AGGD: 5.1	10 % SURE: 12.24	% LALO: 4.01 %	PL-SVM: 39.26 %	PL-KNN: 53.98 %	

Table 6: Classification accuracy of each compared approach on the real-world data sets. For any compared approach \mathcal{B} , •/• indicates whether \mathcal{B} -PLCP is statistically superior/inferior to \mathcal{B} according to pairwise *t*-test at significance level of 0.05.

Approaches		CIFAR-10		CIFAR-100			
	q = 0.1	q = 0.3	q = 0.5	q = 0.01	q = 0.05	q = 0.1	
PICO	$94.39 \pm 0.18 \%$	94.18 ± 0.12 %	$93.58 \pm 0.06 \%$	73.09 ± 0.34 %	72.74 ± 0.30 %	69.91 ± 0.24 %	
PICO-PLCP	94.80 ± 0.07 % ●	94.53 ± 0.10 % ●	93.67 ± 0.16 % ●	73.90 ± 0.20 % ●	$73.51 \pm 0.21\%$	• $70.00 \pm 0.35 \%$	
Fully Supervised	$B: 94.91 \pm 0.$	07 % B-PLCP :	$95.02 \pm 0.03 \%$	$B: 73.56 \pm 0.1$	0% <i>B</i> -PLCP:	90.30 ± 0.08 %	
PRODEN	89.12 ± 0.12 %	87.56 ± 0.15 %	84.92 ± 0.31 %	$63.36 \pm 0.33 \%$	60.88 ± 0.35 %	50.98 ± 0.74 %	
PRODEN-PLCP	89.63 ± 0.15 % ●	88.19 ± 0.19 % •	85.31 ± 0.31 % ●	$64.20 \pm 0.25 \% \bullet$	61.78 ± 0.29 ●	50.76 ± 0.90 %	
Fully Supervised	$B: 90.03 \pm 0$.13 % B-PLCP :	$73.69 \pm 0.14 \%$	$B: 65.03 \pm 0.3$	35 % B-PLCP:	65.52 ± 0.32 %	

Table 2: Classification accuracy of each compared approach on CIFAR-10 and CIFAR-100. For any compared approach \mathcal{B} , •/o indicates whether \mathcal{B} -PLCP is statistically superior/inferior to \mathcal{B} according to pairwise *t*-test at significance level of 0.05.

Experiment

	Data set								
Approaches	FG-NET	Lost	MSRCv2	Mirflickr	Soccer Player	Yahoo!News	FG-NET(MAE3)	FG-NET(MAE5)	
PL-CL	0.159 ± 0.016	0.832 ± 0.019	0.585 ± 0.012	0.697 ± 0.019	0.715 ± 0.001	0.827 ± 0.003	0.600 ± 0.029	0.737 ± 0.018	
PL-CL-PLCP	$0.180 \pm 0.011 \bullet$	$0.852 \pm 0.011 \bullet$	0.638 ± 0.008 ●	$0.704 \pm 0.021 \bullet$	0.719 ± 0.002 ●	$0.829 \pm 0.000 \bullet$	$0.618 \pm 0.023 \bullet$	0.748 ± 0.017 ●	
PL-AGGD	0.141 ± 0.012	0.793 ± 0.020	0.557 ± 0.015	0.695 ± 0.015	0.669 ± 0.003	0.808 ± 0.005	0.571 ± 0.027	0.709 ± 0.025	
PL-AGGD-PLCP	$0.165 \pm 0.014 \bullet$	$0.827 \pm 0.019 \bullet$	$0.640 \pm 0.015 \bullet$	$0.715 \pm 0.015 \bullet$	$0.713 \pm 0.003 \bullet$	$0.831 \pm 0.004 \bullet$	$0.599 \pm 0.026 \bullet$	0.736 ± 0.019 ●	
SURE	0.158 ± 0.012	0.796 ± 0.026	0.603 ± 0.016	0.650 ± 0.024	0.700 ± 0.003	0.798 ± 0.005	0.590 ± 0.019	0.727 ± 0.020	
SURE-PLCP	$0.170 \pm 0.013 \bullet$	$0.834 \pm 0.024 \bullet$	$0.621 \pm 0.013 \bullet$	$0.699 \pm 0.025 \bullet$	$0.703 \pm 0.003 \bullet$	$0.827 \pm 0.005 \bullet$	$0.603 \pm 0.024 \bullet$	$0.738 \pm 0.022 \bullet$	
LALO	0.153 ± 0.017	0.818 ± 0.019	0.548 ± 0.009	0.681 ± 0.013	0.688 ± 0.004	0.822 ± 0.004	0.593 ± 0.025	0.730 ± 0.015	
LALO-PLCP	$0.168 \pm 0.018 \bullet$	$0.831 \pm 0.019 \bullet$	$0.620 \pm 0.009 \bullet$	$0.694 \pm 0.019 \bullet$	$0.706 \pm 0.004 \bullet$	$0.827 \pm 0.004 \bullet$	$0.604 \pm 0.025 \bullet$	0.741 ± 0.019 •	
PL-SVM	0.176 ± 0.015	0.609 ± 0.055	0.570 ± 0.040	0.581 ± 0.022	0.660 ± 0.008	0.691 ± 0.005	0.566 ± 0.025	0.706 ± 0.024	
PL-SVM-PLCP	$0.192 \pm 0.012 \bullet$	$0.786 \pm 0.032 \bullet$	$0.639 \pm 0.031 \bullet$	$0.628 \pm 0.027 \bullet$	0.709 ± 0.006 •	0.821 ± 0.004 •	$0.582 \pm 0.025 \bullet$	0.719 ± 0.022 •	
PL-KNN	0.041 ± 0.007	0.337 ± 0.030	0.415 ± 0.014	0.466 ± 0.013	0.493 ± 0.004	0.403 ± 0.010	0.285 ± 0.017	0.438 ± 0.015	
PL-KNN-PLCP	$0.166 \pm 0.012 \bullet$	$0.784 \pm 0.031 \bullet$	$0.635 \pm 0.015 \bullet$	0.626 ± 0.019 ●	0.698 ± 0.004 ●	0.790 ± 0.008 ●	$0.576 \pm 0.022 \bullet$	0.724 ± 0.019 ●	

Table 7: Transductive accuracy of each compared approach on the real-world data sets. For any compared approach \mathcal{B} , •/• indicates whether \mathcal{B} -PLCP is statistically superior/inferior to \mathcal{B} according to pairwise *t*-test at significance level of 0.05.

Kernel Partno	Partner	Blur	Data set							
	ratuel		FG-NET	Lost	MSRCv2	Mirflickr	Soccer Player	Yahoo!News	FG-NET(MAE3)	FG-NET(MAE5)
	PL-AGGD		0.063 ± 0.010	0.690 ± 0.020	0.451 ± 0.023	0.610 ± 0.012	0.521 ± 0.004	0.605 ± 0.002	0.418 ± 0.020	0.562 ± 0.020
X	P	X	$0.073 \pm 0.011 \bullet$	$0.698 \pm 0.023 \bullet$	$0.380 \pm 0.013 \bullet$	$0.542 \pm 0.013 \bullet$	$0.492 \pm 0.003 \bullet$	$0.463 \pm 0.002 \bullet$	$0.421 \pm 0.020 \bullet$	0.560 ± 0.016 •
1	P	×	$0.073 \pm 0.006 \bullet$	0.721 ± 0.024 o	0.471 ± 0.016 •	$0.664 \pm 0.012 \bullet$	$0.521 \pm 0.004 \bullet$	$0.608 \pm 0.003 \bullet$	0.422 ± 0.030 •	$0.566 \pm 0.020 \bullet$
~	0	~	0.071 ± 0.001 ●	0.721 ± 0.004 o	0.470 ± 0,020 ●	$0.663 \pm 0.011 \bullet$	$0.522 \pm 0.003 \bullet$	$0.605 \pm 0.002 \bullet$	$0.417 \pm 0.022 \bullet$	0.576 ± 0.014 ●
~	P	~	0.076 ± 0.010	0.717 ± 0.020	0.473 ± 0.017	0.668 ± 0.014	0.534 ± 0.005	0.609 ± 0.002	0.441 ± 0.020	0.581 ± 0.014

Table 8: Ablation study of PLCP coupled with PL-AGGD. •/ \circ indicates whether PL-AGGD-PLCP is statistically superior/inferior to its degenerated version according to pairwise *t*-test at significance level of 0.05.

Figure 3: Sensitivity of PLCP.

Thanks