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Federated Learning (FL)

FL can improve model’s performance
while protecting users’ privacy.
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Statistical Heterogeneity

Statistical heterogeneity refers to the case where the data
distribution across clients in federated learning is inconsistent
and does not obey the same sampling, i.e., Non-IID.
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Local training

FedAvg classic FL algorithm requires many communication rounds to train an effective global
(McMahan et al.,2016) model.

FedProx

, adjusts the local training procedure to pull back local models from global model.
(Li et al.,2020)

SCAFFOLD uses control variates (variance reduction) to correct for the client-drift in its local updates.
(Karimireddy et al.,2020)

MOON has proposed to employ contrastive loss to reduce the distance between global and
(Lietal., 2021) local features.
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Data augmentation

FedMix creates the privacy-protected augmentation data by averaging local batches and then
(Yoon et al.,2021b) applying Mixup (Zhang et al., 2018) (linear interpolation between actual data instances)
in local iterations.

VHL
(Tang et al., 2022)

relies on the created virtual data with labels and forces the local features to be close to
the features of same-class virtual data.
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Bias caused by local updates
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For FedAvg, the local models after local epochs could be biased, in detail,
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- Biased local feature: For local feature extractor F;(:), and centralized trained global
feature extractor F;(-), we have: 1) Given the data input X, F;(X) could deviate largely

from F;(X). 2) Given the input from different data distributions X; and X;, F;(X;) could
be very similar or almost identical to F;(X,).

- Biased local classifier: After a sufficient number of iterations, local models classify
all samples into only the classes that appeared in the local datasets.
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Defects in previous works for local learning bias

* FedProx defines local drifts as the differences in model weights, while
SCAFFOLD considers gradient differences as client drifts. These methods,
though have been effective on traditional optimization tasks, may only have
marginal improvements on deep models.

« MOON minimizes the distance between global and local features, but its
performance is limited because they use only the projection layer as part of the
feature extractor, and the contrastive loss diminished without our designed max
step.

« VHL defines local learning bias as the shift in features between samples of the
same classes; however, this approach requires prior knowledge of local label
information and results in a much larger virtual dataset, especially when
increasing the number of classes.



I Method

Overview of the FedBR

first projecting features onto spaces that can distinguish
global and local feature best:

Max Step: maxg Laay(Dp, D;)

= Exwap,vaD.i [ﬁcon(xpax: (}59, (pzae)] : (2)

then 1) minimizing the distance between the global and
local features of pseudo-data and maximizing distance
between local features of pseudo-data and local data;
2) minimize classification loss of both local data and
pseudo-data:

Min Step: ming_ ., Lgen(Dp, D;)
= E(x’y)NDi [Ecls(xa Yy, d)ia W)]
- A]ExpNDp [»Ccls (Xp, yp: 2] w)]
+ ,UJIEXFNDP,XNDI- [ccon (xpa X, ¢g, qbi’ 6)] . (3)
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Los(z,y, 0i,w)  Laas(Tp, Yps 0i,w) Leon(Tp, T, g, P, 0)

Cross-Entropy _
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Yy—_ Up—
P(¢i(x).0) | Pldg(x,).0) | Pléi(x,).0)
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Algorithm 1 Algorithm Framework of FedBR

Require: Local datasets D1, ..., Dy, pseudo dataset DD, where
|D,| = B, and B is the batch size, number of local iterations
K, number of communication rounds 7', number of clients
chosen in each round M, weights used in designed loss A, p,
local learning rate 7.
Ensure: Trained model wr, 81, ¢.
1: Initialize wo, 0o, ¢,.
2: fort=0,..., 7 —1do
3 Send wy, 8¢, ¢,, D,, (optional) to all clients.

Overview of the FedBR

4. for chosenclientz =1,..., M do
5: wgzwt’9?=9t1¢?=¢t’¢g:¢t
6: fork=1,..., K do

o # Max Step

8: 9? = 9;6_1 + T]Veﬁadv.
0: # Min Step

10: wr =Wk — 9V, L.
11: oF = 51 — V4 Lyen.
12; Send wz ,Gf(,qb to server.
13: Wit = M Ez 1“-’

14: 9t+1 — M ZM GK

15: Pri1 = 3 Limr ¢
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Construction of the pseudo-data

Random Sample Mean (RSM)
One RSM sample of the pseudo-data is estimated through a weighted combination of a

random subset of local samples, and the pseudo-label is set to y,; = % -1

Mixture of local samples and the sample mean of a proxy dataset (Mixture)

This strategy relies on applying the procedure of RSM to irrelevant and globally shared
proxy data. To guard the distribution distance between the pseudo-data and local data,
one sample of the pseudo-data at each client is constructed by

~ K ~

Xp:%'l‘l(xp_'_zkﬁl xl'v) Yo K+]_((" 1+ZAP1 Yk (4)
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Reducing bias components

Component 1: Reducing Bias in Local Classifiers
implicitly mimic the global data distribution by using the pseudo-data constructed in to
regularize the outputs and thus debias the classifier

)\]Exwa,' [*C(,‘ls(xpa );P? 19 w)] '

Component 2: Reducing Bias in Local Features

1. construct a projection layer as the critical step to distinguish features extracted by the
global and local feature extractor: can be achieved by maximizing the distance
between global and local features of pseudo-data and simultaneously minimizing the
distance between local features of pseudo-data and local data.

2. minimize the local feature biases under the trained projection space, to enforce the
learned local features of pseudo-data to be closer to the global features of pseudo-
data but far away from the local features of real local data.

£ = exp (m (Pewxp)),Pa(qs,,(xm)) s

T1

f— exp (sim(Pe(qz(x,,)),Pe(qsi(x)))) |

T2

(6)

Leon(Xp, X, ¢y, ¢;,08) = —log ( A J;_l f2> 3 (7)
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The superior performance of FedBR over existing FL and DG algorithms

Table 1: Performance of algorithms. We split RotatedMNIST, CIFAR10, and CIFAR100 to 10 clients with a = 0.1, and ran 1000
communication rounds on RotatedMNIST and CIFAR10 for each algorithm, 800 communication rounds CIFAR100. We report the mean
of maximum (over rounds) 5 test accuracies and the number of communication rounds to reach the threshold accuracy.

Klsorithm RotatedMNIST (CNN) CIFARI0O (VGGI1) CIFAR100 (CCT)
Acc (%) Rounds for 80%  Acc (%) Roundsfor55%  Acc (%) Rounds for 43%

Local 14.67 - 10.00 - 1.31 -
FedAvg 82.47 828 (1.0X) 58.99 736 (1.0X) 44.00 550 (1.0X)
FedProx 82.32 824 (1.0X) 59.14 738 (1.0X) 43.09 756 (0.7X)
Moon 82.68 864 (0.9X) 58.23 820 (0.9X) 42.87 766 (0.7X)
DANN 84.83 743 (1.1X) 58.29 782 (0.9X) 41.83 -
GroupDRO 80.23 910 (0.9X) 56.57 835 (0.9X) 44.34 444 (1.2X)
FedBR (Ours) 86.58 628 (1.3X) 64.65 496 (1.5X) 45.14 352 (1.5X)
FedAvg + Mixup 82.56 840 (1.0X) 58.57 826 (0.9X) 46.37 358 (1.6X)
FedMix 81.33 902 (0.9X) 57.37 872 (0.8X) 42.69 -
FedBR + Mixup (Ours) 83.42 736 (1.1X) 65.32 392 (1.9X) 47.75 294 (1.9X)
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The superior performance of FedBR over existing FL and DG algorithms
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Figure 5: Convergence curve of algorithms on different datasets.
We split RotatedMNIST, CIFAR10, and CIFAR100 datasets to 10
clients, and report the mean accuracy on all local test datasets for
each communications rounds. More Details refer to Figure [9] of

Appendix[C]
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Performance on other aspects

Table 5: Performance of algorithms with 100 clients. We split
CIFAR10 dataset into 100 clients with « = 0.1. We run 1000

communication rounds for each algorithm on the VGG11 model . . . .
and report the mean of the maximal 5 accuracies (over rounds) Table 7: Parameter transmitted and mean simulation time

during training on test datasets. in each round. We split CIFAR10 and CIFAR100 to 10 clients
with @ = 0.1. For FedBR, pseudo-data only transfer once (32
pseudo-data). The simulation time only includes the computation

Methods FedAvg FedDecorr FedMix FedProx Mixup VHL  FedBR

= 820 2.2 caull i time per step, and do not includes the communication time.
CIFAR100 experiments use Mixup as backbone.
CIFARI0 (VGGI1) FedAvg Moon VHL FedCM FedBR
Parameters (Millions) 9.2 9.7 9.2 18.4 9.7
Table 6: Performance of local model on balanced global test Mean simulation time (s)  0.29 0.69 043 0.36 0.60
datasets. We split CIFAR l.O to 10 clients with &« = 0.1, and CIFAR100 (CCT) FedAve Moon VHL FedCM FedBR
report the test accuracies achieved by the local models/aggregated —
models at the end of each communication round. For FedBR caramgiens (ViLions) ced 220 A4 iy a0
- ) 2 Mean simulation time (s) 0.67 1.97 1.44 0.85 1.19

pseudo-data only transfer once (32 pseudo-data).
Algorithm FedAvg FedDecorr VHL  FedBR

Local Model Performance 21.01 21.18 32.81 21.83
Aggregated Model Performance  46.37 47.10 46.80  47.67
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Comparison with VHL

Table 2: Comparison with VHL. We split CIFARI10 and
CIFAR100 to 10 clients with &« = 0.1, and report the mean of
maximum (over rounds) 5 test accuracies and the number of
communication rounds to reach the threshold accuracy. We set
different numbers of virtual data to check the performance of VHL,
and pseudo-data only transfer once in FedBR (32 pseudo-data).
For CIFAR100, we choose Mixup as the backbone.

: CIFARIO0 (VGGI11) CIFAR100 (CCT)
Algorithm
Acc (%) Rounds for 60%  Acc (%) Rounds for 46%
VHL (2000 virtual data) 61.23 886 (1.0X) 46.80 630 (1.0X)
VHL (20000 virtual data) 59.65 998 (0.9X) 46.51 714 (0.9X)

FedBR (32 pseudo-data) 64.61 530 (1.8X) 47.67 554 (1.1X)

N —
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FedBR always outperforms VHL.

FedBR overcomes several shortcomings of
VHL, e.g. the need for labeled virtual data
and the large size of the virtual dataset.
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Ablation Study

Table 4: Ablation studies of FedBR on the effects of two components. We show the performance of two components and remove the
max step (Line 8 in Algorithm|[I)) of component 2. We split RotatedMNIST, CIFAR10, and CIFAR100 to 10 clients with o = 0.1. We run
1000 communication rounds on RotatedMNIST and CIFAR10 for each algorithm and 800 communication rounds on CIFAR100. We
report the mean of maximum (over rounds) 5 test accuracies and the number of communication rounds to reach the target accuracy.

Algorifim RotatedMNIST (CNN) CIFAR10 (VGGI11) CIFAR100 (CCT)
Acc (%) Rounds for 80%  Acc (%) Rounds for 55%  Acc (%) Rounds for 43%
FedAvg 82.47 828 (1.0X) 58.99 736 (1.0X) 46.37 358 (1.0X)
Component 1 84.40 770 (1.1X) 64.32 442 (1.7X) 47.22 330 (1.1X)
+ min step 80.81 922 (0.9X) 62.98 562 (1.3X) 46.54 358 (1.0X)
Component 2 86.25 648 (1.3X) 63.44 483 (1.5X) 47.78 308 (1.2X)
+ w/0 max step 81.24 926 (0.9X) 58.84 584 (1.3X) 43.50 512 (0.7X)

FedBR 86.58 628 (1.3X) 64.65 496 (1.5X) 47.75 294 (1.2X)
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Ablation Study
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Figure 6: Ablation studies of FedBR, regarding the impact of the
projection layer, the communication strategy of pseudo-data, and
the choices of pseudo-data. In Figure[6(a)} we show the perfor-
mance of algorithms with/without the additional projection layer
on the CIFAR10 dataset with the VGG11 model. In Figure[6(b)}
we show the performance of FedBR on RotatedMNIST, CIFAR10,

and CIFAR100 datasets when only trans

ferring pseudo-data once

(at the beginning of training) or generating new pseudo-data each
round. In Figure[6(c)] we show the performance of FedBR using

different types of pseudo-data. In Figure

we show the perfor-

mance of FedBR when constructing RSM

using data with balanced

and unbalanced label distribution. Pseudo-data transfer once at
the beginning of the training in Figure[6(c)} and Figure [6(d)}
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