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Motivations

(d) RUAS [29] (e) Ours (f) Ground truth
Fig. 1: Given an input image (a) with both over-exposure (background windows)
and under-exposure (foreground persons), existing methods fail to handle both
problems well. While (b) performs better on the background, the foreground is
only slightly brightened. Although (¢) performs better on the foreground, the
background is still over-exposed. (d) slightly brightens the foreground but further
over-exposed the background. In contrast, our method (e), which is based on
learning local color distributions, can handle both problems well. The textures
of the window curtains and the patterns of the clothes can both be seen clearly.

Image enhancement issues:

Photos taken under unfavorable lighting conditions may have
over-exposure or under-exposure issues. Often, both over-
and under-exposures may occur together in the same image
due to unbalanced lighting conditions.

Limitations of existing methods:

Existing image enhancement methods are typically
designed to address either the over- or under-exposure
problem in the input image.

When the illumination of the input image contains both
over- and underexposure problems, these existing methods
may not work well.



Contributions

® Exploit the local color distributions (LCDs) to jointly address both over- and under-exposure problems
in the input image. Propose the LCDE module to formulate multi-scale LCDs in order to learn the
representations of over- and under-exposed regions as well as their correlations to the global
illumination.

® Propose a dual-illumination estimator to combine both over- and under-illumination maps to enhance
the input image.

® Construct a new paired dataset consisting of over 1700 images of diverse, non-uniformly illuminated
scenes to facilitate the learning process.



Proposed Dataset

Luminance mapping of MSEC dataset Luminance mapping of LOL dataset
204
9
e
S0
3
put
£ 7
B L
S
% 52 20 e 3 @ w0 e 230
Input luminance Input luminance
(a) (b)
Luminance mapping of our dataset Luminance mapping of MSEC model
-

OQutput luminance

100 150 ™ 7 p 100 150 2%
Input luminance Input luminance

(c) (d)
Fig. 2: The input-ground truth luminance map-
ping curve of (a) MSEC dataset [1], (b) LOL
dataset [10], and (c¢) our dataset. Each cluster
represents an image. For a single image, both
(a) and (b) contains a single mapping of either
brightening or darkening. (d) is the input-output
mapping learned by the model trained on the
MSEC dataset when given (e, f) as the input.
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Ground truth

Fig.3: Some input-ground
truth pairs in our dataset.
Our dataset contains images
of over 1700 scenes.
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Proposed Method--Framework
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Fig. 5: Overview of our proposed network. It leverages the LCD pyramid with an
encoder-decoder architecture for detecting the regions with problematic expo-
sures implicitly, and the for enhancement of the over- and under-exposed regions.



Proposed Method--Dual-illumination Estimation
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Proposed Method-- Encoder-Decoder Network & LCD Pyramid Generation
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Proposed Method-- Encoder-Decoder Network & LCDE module
____________________________________________________________ ...............
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Fig.7: Inferring the illumination
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the guided mask. Our model implic-
itly assigns one decoder to each re-
gion type for adaptive enhancement.



Proposed Method--Fusion Network
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Loss Functions
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Experiments--Visual Comparisons
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Fig. 8: Visual comparison of over- /under-exposed images from our dataset. Our
model reconstructs the details in the over-exposed regions (sky and tower) as
well as the under-exposed regions (wall and door).
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Fig. 9: Visual comparison of an over-exposed image from our dataset. Our result
has the best visual quality.



Experiments--Quantitative Comparison
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Table 1: Quantitative compar- Table 2: Quantjt.ati\.fe comparison on the.pro-
ison on the MSEC [1] test set. p()sfed test set. * indicates tha,t the model is re-
Best performances are marked trained on our proposed training set. Best per-
in bold. formances are marked in bold.



Experiments—Ablation study
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Table 3: Ablation study.
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Visualization

Input image

Fig. 13: The visualization of the learned guided
mask in multi-scales intermediate LCDE module
layers. With the guidance of the LCD pyramid and
the constraint of the dual-illumination map, the
model learns the guided mask adaptively.



Limitations
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Fig. 14: Failure cases. Our
method may fail to enhance
images with a large region of
under-exposed pixels (build-
ing in (b)) or over-exposed
pixels (sky in (3)).
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