

COMPETITIVE PHYSICS INFORMED NETWORKS

ICLR2023

Various real-world applications are usually described by partial differential equations (PDEs).

- Navier-Stokes Eq.
- Schrödinger Eq.
- Maxwell Eq.
- numerical algorithms
 - computationally expensive
 - face severe challenges in multi-physics and multi-scale systems
 - data assimilation introduces additional uncertainties
- machine learning
 - Physics-informed Neural Networks (PINNs): encode PDEs into the loss function of neural networks

Physics-Informed Neural Networks ParN。C 模式识别与神经计算研究组

$$egin{aligned} \mathcal{A}[u] &= f, & ext{in} \Omega \ u &= g, & ext{on} \partial \Omega, \end{aligned}$$

- use neural network to approximate u

$$\mathcal{L}^{ ext{PINN}}(\mathcal{P},oldsymbol{x},\overline{oldsymbol{x}}) = \mathcal{L}^{ ext{PINN}}_{\Omega}(\mathcal{P},oldsymbol{x}_{\Omega}) + \mathcal{L}^{ ext{PINN}}_{\partial\Omega}(\mathcal{P},\overline{oldsymbol{x}}),$$

$$\mathcal{L}_{\Omega}^{ ext{PINN}}(\mathcal{P},oldsymbol{x}) = rac{1}{N_{\Omega}}\sum_{i=1}^{N_{\Omega}} \left(\mathcal{A}[\mathcal{P}](x_i) - f(x_i)
ight)^2$$

$$\mathcal{L}_{\partial\Omega}^{ ext{PINN}}(\mathcal{P},\overline{oldsymbol{x}}) = rac{1}{N_{\partial\Omega}}\sum_{i=1}^{N_{\partial\Omega}}\left(\mathcal{P}\left(\overline{x}_i
ight) - g\left(\overline{x}_i
ight)
ight)^2$$

COMPETITIVE PHYSICS INFORMED NEURAL NETWORKS

 \boldsymbol{x} PINN Discriminator θ A σ σ σ σ A a $d_{\partial\Omega}$ d_{Ω} Δu $\mathcal{L}^{ ext{CPINN}} = d_{\partial\Omega}(g-u_{bc}) + d_\Omega(f-\Delta u)$ (b) CPINN $\max_{\mathcal{D}} \min_{\mathcal{P}} \mathcal{L}_{\Omega}^{\mathbf{CPINN}}(\mathcal{P}, \mathcal{D}, \boldsymbol{x}) + \mathcal{L}_{\partial\Omega}^{\mathbf{CPINN}}(\mathcal{P}, \mathcal{D}, \overline{\boldsymbol{x}}),$ M AT

$$\mathcal{L}_{\Omega}^{ ext{CPINN}}(\mathcal{D},\mathcal{P},oldsymbol{x}) = rac{1}{N_{\Omega}}\sum_{i=1}^{N_{\Omega}}\mathcal{D}_{\Omega}(x_{i})\left(\mathcal{A}[\mathcal{P}](x_{i}) - f(x_{i})
ight) \qquad \mathcal{L}_{\partial\Omega}^{ ext{CPINN}}(\mathcal{D},\mathcal{P},\overline{oldsymbol{x}}) = rac{1}{N_{\partial\Omega}}\sum_{i=1}^{N_{\partial\Omega}}\mathcal{D}_{\partial\Omega}(\overline{x}_{i})\left(\mathcal{P}\left(\overline{x}_{i}
ight) - g\left(\overline{x}_{i}
ight)
ight)$$

The Nash equilibrium of this game is: $\, \mathcal{P} \equiv u ext{ and } \mathcal{D} \equiv 0 \,$

COMPETITIVE PHYSICS INFORMED NEURAL NETWORKS

$$\mathcal{P}(x) = \sum_{i=1}^{\dim(oldsymbol{\pi})} \pi_i \psi_i(x), \quad \mathcal{D}(x) = \sum_{i=1}^{\dim(oldsymbol{\delta})} \delta_i \phi_i(x),$$

$$egin{aligned} A \in \mathbb{R}^{N_\Omega imes \dim(m{\pi})} \ f \in \mathbb{R}^{N_\Omega} \end{aligned} egin{aligned} & egin{al$$

 $A\pi = f$

For PINNS:
$$\min_{m{\pi}} \|Am{\pi} - f\|^2$$
 $m{\pi} = (m{A}^ op m{A})^{-1} m{A}^ op m{f} \qquad \kappa(m{A}^ op m{A}) = \kappa(m{A})^2$

For CPINNS:
$$\min_{\boldsymbol{\pi}} \max_{\boldsymbol{\delta}} \boldsymbol{\delta}^{\top} (\boldsymbol{A}\boldsymbol{\pi} - \boldsymbol{f})$$

 $\begin{bmatrix} 0 & \boldsymbol{A}^{\top} \\ \boldsymbol{A} & 0 \end{bmatrix} \begin{bmatrix} \pi \\ \delta \end{bmatrix} = \begin{bmatrix} 0 \\ f \end{bmatrix}, \text{ with } \kappa \left(\begin{bmatrix} 0 & \boldsymbol{A}^{\top} \\ \boldsymbol{A} & 0 \end{bmatrix} \right) = \kappa(\boldsymbol{A})$

POISSON EQUATION, NONLINEAR SCHRÖDINGER EQUATION, BURGERS' EQUATION, ALLEN–CAHN EQUATION

Figure 1: Comparison of CPINN and PINN on the Poisson problem of equation 15 in terms of relative error. CPINN has a faster convergence rate and reduces the L_2 error to 1.7×10^{-8} , whereas the PINN case has an L_2 error of 1.2×10^{-4} even with a larger computational budget.

RESULTS

Figure 3: Comparison of CPINN and PINN on the nonlinear Schrödinger eq. (21) in terms of relative errors. After 200 000 training iterations, PINN cannot reduce the L_2 error further, plateauing about 4×10^{-3} , whereas CPINN reduces the error to 6×10^{-4} under a smaller computational budget.

	Optimizer	Iterations	L_2 Rel. Error	$\mathcal{L}^{\mathrm{PINN}}$	$\mathcal{L}^{\mathrm{PINN}}_{\Omega}$	$\mathcal{L}^{ ext{PINN}}_{\partial\Omega}$
NNId	Adam	3×10^7	1.2×10^{-4}	1.4×10^{-8}	8.4×10^{-8}	5.5×10^{-9}
	SGD	$2.2 imes 10^7$	$1.3 imes 10^{-3}$	1.1×10^{-6}	5.2×10^{-7}	$6.3 imes 10^{-7}$
CPINN	ACGD	4.8×10^{4}	$1.7 imes 10^{-8}$	2.1×10^{-14}	2×10^{-14}	6×10^{-16}
	CGD	$6 imes 10^5$	$3.5 imes 10^{-4}$	5.1×10^{-7}	3.5×10^{-7}	1.7×10^{-7}
	XAdam	$8.5 imes 10^6$	1.6	$1.6 imes 10^6$	$1.6 imes10^6$	0.2
	XSGD	$8.5 imes 10^6$	1.2×10^{-4}	$1.2 imes 10^{-7}$	9.2×10^{-8}	3×10^{-8}
WAN	Adam + Adagrad	$1.3 imes 10^6$	1.2	2.6	2.6	1.2×10^{-3}
	ACGD	$1.8 imes 10^5$	9×10^{-3}	1.1×10^{-3}	$1.1 imes 10^{-3}$	$2.7 imes 10^{-5}$

Table 1: Performance of CPINNs and PINNs on the 2D Poisson problem of equation 15.