

How Re-sampling Helps for Long-Tail Learning?

Jiang-Xin Shi^{1*} Tong Wei^{2*} Yuke Xiang³ Yu-Feng Li^{1†} ¹National Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, China ²School of Computer Science and Engineering, Southeast University, Nanjing, China ³Consumer BG, Huawei Technologies, Shenzhen, China {shijx,liyf}@lamda.nju.edu.cn, weit@seu.edu.cn, yuke.xiang@huawei.com

NeurIPS2023

BBN^[1]

cRT^[2]

- First, trains a preliminary model using the uniform sampler
- Second, fixes the representations and re-trains the linear classifier using a class-balanced sampler

[1] Bbn: Bilateral-branch network with cumulative learning for long-tailed visual recognition

[2] Decoupling representation and classifier for long-tailed recognition

probability of sampling

$$p_k = \frac{n_k^q}{\sum_{k' \in [K]} n_{k'}^q}$$

q=1: uniform sampling q=0: class-balanced re-sampling

Table 1: Test accuracy (%) of CE with uniform sampling, classifier re-training (cRT), and classbalanced re-sampling (CB-RS) on four long-tail benchmarks. We report the accuracy in terms of all, many-shot, medium-shot, and few-shot classes.

	MNIST-LT			Fashion-LT			CIFAR100-LT			ImageNet-LT						
	All	Many	Med.	Few	All	Many	Med.	Few	All	Many	Med.	Few	All	Many	Med.	Few
CE	65.8	99.1	89.9	0.0	45.6	94.7	43.1	0.0	39.1	65.8	36.8	8.8	35.0	57.7	26.5	4.7
cRT	82.5	96.6	89.4	58.8	60.3	77.1	61.4	42.1	41.6	63.0	40.4	16.5	41.9	52.9	39.2	23.6
CB-RS	90.8	98.7	94.4	77.7	80.5	86.6	74.3	82.8	34.1	59.5	31.1	6.2	37.6	47.5	36.5	16.7

highly semantically related to labels

complex contexts

cRT: uses uniform sampling to learn the representation and class-balanced resampling to fine-tune the classifier.

CB-RS: class-balanced re-sampling for the whole training process.

(a) Uniform sampling.

(b) Class-balanced re-sampling.

Test Set

re-sampling is sensitive to the contexts in training samples

Figure 2: Visualization of learned representation of training and test set on MNIST-LT. Using classbalanced re-sampling yields more discriminative and balanced representations.

Figure 3: Visualization of features with Grad-CAM [17] on CIFAR100-LT. Uniform sampling mainly learns label-relevant features, while re-sampling overfits the label-irrelevant features.

Colored MNIST-LT (CMNIST-LT)

- First, head classes are prone to have rich contexts, so we inject different colors into the samples of each head class
- Second, tail classes have limited contexts, so we inject an identical color into the samples of each tail class

(a) Comparison of class accuracy.

re-sampling does not always fail, it can help for long-tail learning if avoiding the irrelevant contexts.

Figure 4: Comparison of Uniform sampling, cRT, and CB-RS on MNIST-LT and CMNIST-LT.

Method

Figure 5: An overview of the proposed method.

Uniform Module

 $\boldsymbol{z}_i^u = f^u(\boldsymbol{x}_i)$ $\mathcal{L}_i^u = \ell^u(\boldsymbol{z}_i^u, y_i)$ Algorithm 1 Training procedure of context-shift augmentation

Input: training data $\mathcal{D} = \{(x_i, y_i)\}_{i=1}^N$; context memory bank Q, maximum volume size V; model parameters ϕ , f^u , f^b ; loss functions ℓ^u , ℓ^b ;

Procedure:

- 1: Initialize model parameters ϕ , f^u , f^b ; 2: Re-sampling a class-balanced dataset $\widetilde{\mathcal{D}} = \{(\widetilde{x}_i, \widetilde{y}_i)\}_{i=1}^N$;
- 3: Empty memory bank Q;
- 4: for epoch = 1, ..., T do 5:
- repeat
- Draw a mini-batch $(\boldsymbol{x}_i, y_i)_{i=1}^B$ from \mathcal{D} ; 6:
- Draw a mini-batch $(\tilde{x}_i, \tilde{y}_i)_{i=1}^B$ from $\tilde{\mathcal{D}}$; 7:
- // uniform module 8:
- 9: for $i = 1, \ldots, B$ do
- Calculate $z_i^u = f^u(\phi(x_i))$ and $\mathcal{L}_i^u = \ell^u(z_i^u, y_i)$; 10:
- if $p(y = y_i | x_i, \phi, f^u) \ge \delta$ then 11:
- Calculate background mask M_i of x_i ; 12:
- 13: Push (x_i, M_i) into Q; end if
- 14: 15:
- end for
- Calculate $\mathcal{L}^{u} = \frac{1}{B} \sum_{i=1}^{B} \mathcal{L}_{i}^{u};$ *// balanced re-sampling module* 16: 17:
- if Size of Q reaches V then 18:
- Obtain contexts $(\check{x}_i, M_i)_{i=1}^B$ from Q; 19:
- 20: $\lambda \sim \text{Uniform}(0,1);$
- for i = 1, ..., B do 21:
- $\tilde{\boldsymbol{x}}_i = \lambda \boldsymbol{M}_i \odot \check{\boldsymbol{x}}_i + (1 \lambda \boldsymbol{M}_i) \odot \tilde{\boldsymbol{x}}_i;$ 22:
- Calculate $z_i^b = f^b(\phi(\tilde{x}_i))$ and $\mathcal{L}_i^b = \ell^b(z_i^b, \tilde{y}_i)$; 23:
- end for 24:
- Calculate $\mathcal{L}^b = \frac{1}{B} \sum_{i=1}^{B} \mathcal{L}^b_i$; 25: 26: else
- Assign $\mathcal{L}^b = 0;$ 27:
- 28: end if
- 29: // total objective function
- 30: Calculate $\mathcal{L} = \mathcal{L}^u + \mathcal{L}^b$;
- Update model parameters ϕ , f^u , f^b with \mathcal{L} ; 31:
- 32: until all training data are traversed.
- 33: end for

Balanced Module

Algorithm 1 Training procedure of context-shift augmentation

Input: training data $\mathcal{D} = \{(x_i, y_i)\}_{i=1}^N$; context memory bank Q, maximum volume size V; model parameters ϕ , f^u , f^b ; loss functions ℓ^u , ℓ^b ;

Procedure:

- 1: Initialize model parameters ϕ , f^u , f^b ; 2: Re-sampling a class-balanced dataset $\widetilde{\mathcal{D}} = \{(\widetilde{x}_i, \widetilde{y}_i)\}_{i=1}^N$;
- 3: Empty memory bank Q;
- 4: for epoch = 1, ..., T do 5:
- repeat
- Draw a mini-batch $(\boldsymbol{x}_i, y_i)_{i=1}^B$ from \mathcal{D} ; 6:
- Draw a mini-batch $(\tilde{x}_i, \tilde{y}_i)_{i=1}^B$ from $\tilde{\mathcal{D}}$; 7:
- 8: // uniform module
- 9: for $i = 1, \ldots, B$ do 10:
 - Calculate $z_i^u = f^u(\phi(x_i))$ and $\mathcal{L}_i^u = \ell^u(z_i^u, y_i)$;
- if $p(y = y_i \mid x_i, \phi, f^u) \ge \delta$ then 11:
- Calculate background mask M_i of x_i ; 12:
- 13: Push (x_i, M_i) into Q;
- 14: end if
- 15: end for
- Calculate $\mathcal{L}^{u} = \frac{1}{B} \sum_{i=1}^{B} \mathcal{L}_{i}^{u};$ *// balanced re-sampling module* 16:
- 17: if Size of Q reaches V then
- 18:
- Obtain contexts $(\check{x}_i, M_i)_{i=1}^B$ from Q; 19: 20: $\lambda \sim \text{Uniform}(0,1);$
- for i = 1, ..., B do 21:
- $\tilde{\boldsymbol{x}}_i = \lambda \boldsymbol{M}_i \odot \check{\boldsymbol{x}}_i + (1 \lambda \boldsymbol{M}_i) \odot \tilde{\boldsymbol{x}}_i;$ 22:
- Calculate $z_i^b = f^b(\phi(\tilde{x}_i))$ and $\mathcal{L}_i^b = \ell^b(z_i^b, \tilde{y}_i)$; 23:
- end for 24:
- Calculate $\mathcal{L}^b = \frac{1}{B} \sum_{i=1}^{B} \mathcal{L}_i^b;$ 25:

26: else

- Assign $\mathcal{L}^b = 0$: 27: end if
- 28: 29:
- // total objective function
- 30: Calculate $\mathcal{L} = \mathcal{L}^u + \mathcal{L}^b$;
- Update model parameters ϕ , f^u , f^b with \mathcal{L} : 31:
- 32: until all training data are traversed.
- 33: end for

Experiments

Dataset	CI	FAR100-	LT	CIFAR10-LT			
Imbalance Ratio	100	50	10	100	50	10	
CE	38.3	43.9	55.7	70.4	74.8	86.4	
Focal Loss [31]	38.4	44.3	55.8	70.4	76.7	86.7	
CB-Focal [7]	39.6	45.2	58.0	74.6	79.3	87.1	
CE-DRS [15]	41.6	45.5	58.1	75.6	79.8	87.4	
CE-DRW [15]	41.5	45.3	58.1	76.3	80.0	87.6	
LDAM-DRW [15]	42.0	46.6	58.7	77.0	81.0	88.2	
cRT 6	42.3	46.8	58.1	75.7	80.4	88.3	
LWS 6	42.3	46.4	58.1	73.0	78.5	87.7	
BBN [14]	42.6	47.0	59.1	79.8	82.2	88.3	
mixup [29]	39.5	45.0	58.0	73.1	77.8	87.1	
Remix [33]	41.9	-	59.4	75.4		88.2	
M2m [32]	43.5	-	57.6	79.1	-	87.5	
CAM-BS [13]	41.7	46.0	1	75.4	81.4	-	
CMO [27]	43.9	48.3	59.5	-	-	-	
cRT+mixup [34]	45.1	50.9	62.1	79.1	84.2	89.8	
LWS+mixup [34]	44.2	50.7	62.3	76.3	82.6	89.6	
CSA (ours)	45.8	49.6	61.3	80.6	84.3	89.8	
CSA + mixup (ours)	46.6	51.9	62.6	82.5	86.0	90.8	

Table 2: Test accuracy (%) on CIFAR datasets with various imbalanced ratios.

Table 3: Test accuracy (%) on ImageNet-LT dataset.

	ResNet-10	ResNet-50					
	(All)	All	Many	Med.	Few		
CE	34.8	41.6	64.0	33.8	5.8		
Focal Loss [31]	30.5		-		-		
OLTR 5	35.6	-	-	-	-		
FSA [28]	35.2	-	<u></u>	-	1		
cRT [6]	41.8	47.3	58.8	44.0	26.1		
LWS 6	41.4	47.7	57.1	45.2	29.3		
BBN [14]	22	48.3	2	-	-		
CMO [27] [†]	-	49.1	67.0	42.3	20.5		
CSA (ours)	42.7	49.1	62.5	46.6	24.1		
CSA [†] (ours)	43.2	49.7	63.6	47.0	23.8		

[†] denotes a longer training of 100 epochs.

Experiments

	All	Many	Med.	Few
Ours	45.8	64.3	49.7	18.2
Ours w/o Q	41.2 (-4.6)	65.1 (+0.8)	41.9 (-7.8)	10.7 (-7.5)

Table 4: Ablation study on the context bank Q.

Table 5: Influence of the threshold δ .

δ	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
Accuracy	45.47	45.37	45.55	44.83	45.52	45.59	45.42	45.08	45.83	44.93

Experiments

Figure 10: Visualization of learned representation on CIFAR100-LT.

Figure 11: Visualization of features with Grad-CAM on CIFAR100-LT. Our method can alleviate the negative impact on head-class samples caused by the overfitting problem.

Thank you