

IOMatch: Simplifying Open-Set Semi-Supervised Learning with Joint Inliers and Outliers Utilization

Zekun Li¹ Lei Qi² Yinghuan Shi^{1,*} Yang Gao¹ ¹ Nanjing University ² Southeast University

ICCV 2023

Background

Semi-Supervised Learning

Semi-supervised learning (SSL) is a classical machine learning paradigm that attempts to improve a model's performance by utilizing unlabeled data in addition to insufficient labeled data. With a tiny fraction of labeled data, advanced deep SSL methods can achieve the performance of fully supervised methods in some cases, such as image classification and semantic segmentation.

Open-Set Semi-Supervised Learning

Most existing SSL methods rely on the fundamental assumption that labeled and unlabeled data share the same class space. However, it is usually difficult, even impossible, to collect such a unlabeled data set in many real-world applications since we can not manually examine the massive unlabeled data. Therefore, a more challenging scenario arises, where unseen-class outliers not belonging to any of the labeled classes exist in the unlabeled data. Such setting is called Open-Set Semi-Supervised Learning (OSSL)

Related Work

One-vs-All Network

Hard Negative Classifier Sampling

 $\mathcal{L}_{ova}(\mathbf{x}^s, y^s) = -\log(p(\hat{y}^{y^s} | \mathbf{x}^s)) - \min_{j \neq y^s} \log(1 - p(\hat{y}^j | \mathbf{x}^s))$

Related Work

OpenMatch

detect-and-filter strategy

$$\mathcal{L}_{ova}(\mathcal{X}) := \frac{1}{B} \sum_{b=1}^{B} -\log(p^{y_b}(t=0|x_b)) - \min_{i \neq y_b} \log(p^i(t=1|x_b)).$$

identify the unlabled sample u_b as an outlier if $p^{\hat{y}}(t=0|u_b) < 0.5$, where $\hat{y} = \arg \max_j C(F(u_b))$

Motivation

The motivation of our work comes from a surprising fact in open-set semi-supervised learning tasks: An unreliable outlier detector can be more harmful than outliers themselves, because it will wrongly exclude valuable inliers from subsequent training. For this issue, we consider a unified paradigm for utilizing openset unlabeled data, even when it is difficult to distinguish exactly between inliers and outliers, and thus we propose IOMatch.

(a) Produce Open-Set Targets

(b) Optimize Whole Framework

ParNeC 模式识别与神经计算研究组 PAttern Recognition and NEural Computing

$$\chi = \{\chi_k : k \in (1, \dots, K)\}$$

 $\boldsymbol{o}_{i,k} = \chi_k(\boldsymbol{z}_i) \in \mathbb{R}^2$
where $\boldsymbol{o}_{i,k} = (o_{i,k}, \bar{o}_{i,k})$ and $o_{i,k} + \bar{o}_{i,k} = 1$

(a) Produce Open-Set Targets

(b) Optimize Whole Framework

ParN。C 模式识别与神经计算研究组 PAttern Recognition and NEural Computing

$$for \ 1 \le k \le K \qquad \widetilde{q}_{i,k} = \widetilde{p}_{i,k} \cdot o_{i,k}^w$$
$$\mathcal{S}_i = 1 - \sum_{j=1}^K \widetilde{q}_{i,j} = \sum_{j=1}^K \widetilde{p}_{i,j} \cdot \overline{o}_{i,j}^w.$$
$$\widetilde{q}_{i,k} = \begin{cases} \widetilde{p}_{i,k} \cdot o_{i,k}^w & \text{if } 1 \le k \le K; \\ \sum_{j=1}^K \widetilde{p}_{i,j} \cdot \overline{o}_{i,j}^w & \text{if } k = K+1. \end{cases}$$

 $\widetilde{p}_i = \mathrm{DA}(\phi(h_i^w)).$

(a) Produce Open-Set Targets

(b) Optimize Whole Framework

(a) Produce Open-Set Targets

(b) Optimize Whole Framework

hard negative classifier sampling

$$\mathcal{L}_{mb}(\mathcal{X}) = \frac{1}{B} \sum_{i=1}^{B} \left(-\log(o_{i,y_i}) - \min_{k \neq y_i} \log(\bar{o}_{i,k}) \right)$$

(a) Produce Open-Set Targets

(b) Optimize Whole Framework

$$\mathcal{L}_{op}(\mathcal{U}) = \frac{1}{\mu B} \sum_{i=1}^{\mu B} \mathbb{1}(\max_{k}(\widetilde{q}_{i,k}) > \tau_{q}) \cdot \mathbf{H}(\widetilde{q}_{i}, q_{i}^{s}),$$

$$\mathcal{L}_{ui}(\mathcal{U}) = \frac{1}{\mu B} \sum_{i=1}^{\mu B} \mathcal{F}(\boldsymbol{u}_i) \cdot \mathbf{H}(\widetilde{\boldsymbol{p}}_i, \boldsymbol{p}_i^s).$$
$$\mathcal{F}(\boldsymbol{u}_i) = \mathbb{1}(\max_k(\widetilde{\boldsymbol{p}}_{i,k}) > \tau_p) \cdot \mathbb{1}(\mathcal{S}_i < 0.5)$$

$$\mathcal{L}_{overall} = \mathcal{L}_s + \lambda_{mb} \mathcal{L}_{mb} + \lambda_{ui} \mathcal{L}_{ui} + \lambda_{op} \mathcal{L}_{op}$$

Closed-set classification accuracy (%) on the seen-class test data of CIFAR-10/100 with varying seen/unseen class splits and labeled set sizes.

Dataset		CIFAR-10		CIFAR-100						
	Class split (Seen / Unseen)		6/4		20 / 80		50 / 50		80 / 20	
Number of labels per class		4	25	4	25	4	25	4	25	
Standard SSL	MixMatch [3]	NeurIPS'19	43.08 ± 1.79	63.13 ± 0.64	28.13 ± 5.06	51.28 ± 1.45	26.97 ± 0.46	56.93 ± 0.84	28.35 ± 0.83	53.77 ± 0.97
	ReMixMatch [2]	ICLR'20	72.82 ± 1.81	87.08 ± 1.12	36.02 ± 3.56	61.83 ± 0.81	37.57 ± 1.54	65.80 ± 1.33	40.64 ± 2.97	62.90 ± 1.07
	FixMatch [28]	NeurIPS'20	81.58 ± 6.63	92.94 ± 0.80	46.27 ± 0.64	66.45 ± 0.74	48.93 ± 5.05	68.77 ± 0.89	43.06 ± 1.21	64.44 ± 0.51
	CoMatch [20]	ICCV'21	86.08 ± 1.08	92.57 ± 0.47	43.53 ± 3.01	66.82 ± 1.37	43.17 ± 0.55	67.85 ± 1.17	37.89 ± 1.22	62.04 ± 0.08
	FlexMatch [41]	NeurIPS'21	73.34 ± 4.42	86.44 ± 3.72	37.93 ± 4.49	62.68 ± 2.02	44.10 ± 1.88	68.98 ± 0.94	43.44 ± 2.40	64.34 ± 0.64
	SimMatch [43]	CVPR'22	79.84 ± 4.76	90.07 ± 2.44	36.93 ± 5.72	67.23 ± 1.13	51.53 ± 2.02	69.71 ± 1.44	50.32 ± 2.57	65.68 ± 1.43
	FreeMatch [34]	ICLR'23	79.26 ± 4.11	92.27 ± 0.15	45.18 ± 8.36	64.62 ± 0.79	50.26 ± 1.92	68.57 ± 0.27	47.34 ± 0.57	64.41 ± 0.55
. 1	UASD [7]	AAAI'20	35.25 ± 1.07	56.42 ± 1.34	29.78 ± 4.28	53.78 ± 0.67	29.08 ± 1.44	54.24 ± 1.10	26.41 ± 2.16	50.33 ± 0.62
SS	DS ³ L [10]	ICML'20	39.09 ± 1.24	51.83 ± 1.06	19.70 ± 1.98	41.78 ± 1.45	21.62 ± 0.54	47.41 ± 0.61	20.10 ± 0.48	40.51 ± 1.02
Open-Set 3	MTCF [39]	ECCV'20	49.15 ± 6.12	74.42 ± 2.95	32.58 ± 3.36	55.93 ± 1.66	35.35 ± 2.39	57.72 ± 0.20	25.40 ± 1.20	54.59 ± 0.49
	T2T [16]	ICCV'21	73.89 ± 1.55	85.69 ± 1.90	44.23 ± 2.27	65.60 ± 0.71	39.31 ± 1.16	68.59 ± 0.92	38.16 ± 0.59	63.86 ± 0.32
	OpenMatch [25]	NeurIPS'21	43.63 ± 3.26	66.27 ± 1.86	37.45 ± 2.67	62.70 ± 1.76	33.74 ± 0.38	66.53 ± 0.54	28.54 ± 1.15	61.23 ± 0.81
	SAFE-STUDENT [14]	CVPR'22	59.28 ± 1.18	77.87 ± 0.14	34.53 ± 0.67	58.07 ± 1.40	35.84 ± 0.86	62.75 ± 0.38	34.17 ± 0.69	57.99 ± 0.34
	IOMatch	Ours	89.68 ± 2.04	93.87 ± 0.16	53.73 ± 2.12	67.28 ± 1.10	56.31 ± 2.29	69.77 ± 0.58	50.83 ± 0.99	$\underline{64.75 \pm 0.52}$

Open-set classification balanced accuracy (%) on the open-set test data of CIFAR-10/100, which consist of samples from all the seen and unseen classes.

Dataset		CIFAR-10		CIFAR-100						
Class split (Seen / Unseen)		6/4		20 / 80		50 / 50		80 / 20		
Number of labels per class		4	25	4	25	4	25	4	25	
Open-Set SSL	UASD [7]	AAAI'20	17.10 ± 0.32	36.01 ± 0.22	10.50 ± 0.83	26.96 ± 0.53	6.92 ± 0.55	32.23 ± 0.54	5.77 ± 0.21	27.61 ± 1.15
	DS3L [10]	ICML'20	30.89 ± 0.33	40.45 ± 0.77	12.56 ± 1.21	34.35 ± 0.41	12.14 ± 0.39	35.17 ± 0.48	11.10 ± 1.27	29.09 ± 0.31
	MTCF [39]	ECCV'20	33.35 ± 7.21	46.13 ± 0.54	8.12 ± 2.10	26.60 ± 3.66	4.13 ± 0.37	38.36 ± 0.29	1.46 ± 0.17	30.75 ± 0.52
	T2T [16]	ICCV'21	50.57 ± 0.38	61.10 ± 0.39	17.17 ± 1.37	37.18 ± 0.60	12.74 ± 2.66	44.24 ± 0.42	34.23 ± 0.57	51.41 ± 0.96
	OpenMatch [25]	NeurIPS'21	14.37 ± 0.05	20.35 ± 3.50	8.77 ± 2.84	39.89 ± 1.16	7.00 ± 0.02	49.75 ± 1.08	6.30 ± 0.87	44.83 ± 0.62
	SAFE-STUDENT [14]	CVPR'22	45.27 ± 0.36	52.78 ± 0.64	15.94 ± 1.07	28.83 ± 0.46	$\underline{23.98 \pm 0.88}$	46.71 ± 1.74	29.43 ± 0.66	50.48 ± 0.61
	IOMatch	Ours	$\textbf{75.08} \pm 1.92$	$\textbf{78.96} \pm 0.08$	$\textbf{45.94} \pm 1.70$	58.52 ± 0.48	46.36 ± 1.93	60.78 ± 0.71	39.96 ± 0.95	54.39 ± 0.38

ParNeC 模式识别与神经计算研究组 PAttern Recognition and Neural Computing

Evaluation	Close	ed-Set	Open-Set		
Labeled ratio	1%	5%	1%	5%	
FixMatch	52.52 ± 3.82	78.55 ± 1.46	—	_	
CoMatch	62.92 ± 0.90	79.17 ± 0.42	_	_	
SimMatch	$\underline{64.15 \pm 0.94}$	$\underline{80.23 \pm 0.53}$	-	_	
T2T	63.70 ± 0.83	78.87 ± 0.49	$\underline{48.81 \pm 0.88}$	58.51 ± 0.41	
OpenMatch	56.35 ± 3.35	73.90 ± 1.05	21.80 ± 1.90	57.25 ± 0.76	
SAFE-STUDENT	58.38 ± 2.34	75.85 ± 0.99	44.08 ± 2.09	55.25 ± 1.46	
IOMatch	69.18 ± 1.68	$\textbf{81.43} \pm \textbf{0.78}$	57.71 ± 2.69	$\textbf{73.94} \pm 0.99$	

Table 3. Close-set and open-set accuracy (%) on ImageNet-30 with the class split of 20/10. We report the mean with standard deviation over 3 runs of different random seeds.

Figure 5. Ablation results on different combinations of learning objectives. "A1", "A2", and "A3" stand for the frameworks optimized with $\{\mathcal{L}_s, \mathcal{L}_{ui}\}, \{\mathcal{L}_s, \mathcal{L}_{mb}, \mathcal{L}_{ui}\}, \{\mathcal{L}_s, \mathcal{L}_{mb}, \mathcal{L}_{op}\}$, respectively. We compare the performance with FixMatch ("Baseline") and the full version of IOMatch ("Full").

Figure 6. Performance with different values of each weight (*i.e.*, λ_{mb} , λ_{ui} and λ_{op}). It is shown that setting all the weights to 1 is a simple yet appropriate choice.

Figure 7. We vary the confidence thresholds, τ_p and τ_q , respectively. The set { $\tau_p = 0.95, \tau_q = 0.5$ } gives the best performance.

Table 4. Closed-set classification accuracy (%) of several methods in the standard SSL setting (presented in the column of "SSL") compared to the performance in the OSSL setting.

Task	CIFAR-	50-200	CIFAR-50-1250		
Setting	OSSL	SSL	OSSL	SSL	
FixMatch	43.94	45.64	68.92	72.74	
SimMatch	49.98	51.76	69.70	73.66	
OpenMatch	37.60	39.16	66.54	67.80	
IOMatch	56.14	55.94	69.84	73.28	

Table 5. Closed-set classification accuracy (%) of IOMatch extended with auxiliary self-supervised learning objectives.

Dataset	CIFAR100						
Class split	50	/ 50	80 / 20				
Number of labels	4	25	4	25			
IOMatch	56.14	69.84	49.89	64.28			
w/ Contrastive	57.08	70.80	50.25	65.92			
w/ Rotation	58.92	71.54	50.90	66.50			

Thanks