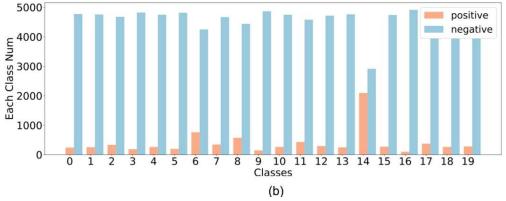


Learning in Imperfect Environment: Multi-Label Classificationwith Long-Tailed Distribution and Partial Labels

Wenqiao Zhang¹ Changshuo Liu² Lingze Zeng² Bengchin Ooi² Siliang Tang¹ Yueting Zhuang¹ ¹ Zhejiang University, China, ² National University of Singapore, Singapore, wenqiaozhang@zju.edu.cn, liu717@comp.nus.edu.sg, Zenglz_pro@163.com, ooibc@comp.nus.edu.sg, siliang@zju.edu.cn, yzhuang@zju.edu.cn

ICCV 2023

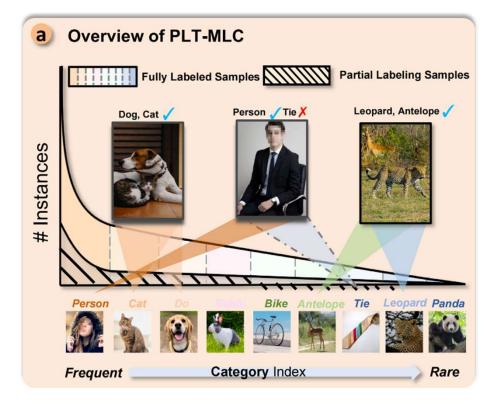



Background

Imbalance between different classes

Imbalance exists in ratio of positives to negatives for each class

- Head class have a large ratio
- Tail classes have a small ratio



Background

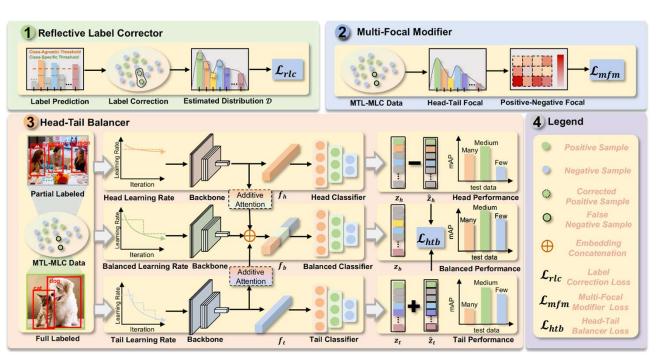
南京航空航天大學

Complexities that typically arise in real-world applications:

- i) Long-Tailed (LT) Class Distribution.
- ii) Partial Labels (PL)of Instances.

illustrates an overview of the proposed PLT-MLC task.

- i) False Negative Training.
- ii) Head-Tail and Positive-Negative Imbalance.
- iii) Head Overfitting and Tail Underfitting.


Consequently,a robust PLT-MLC model should address the co-occurringimbalances simultaneously.

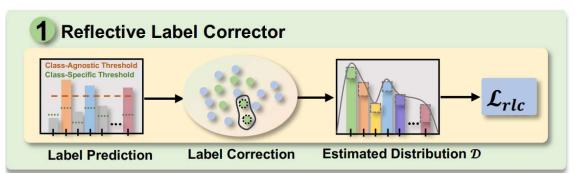
Methods

南京航空航天大學

Correction→Modification→Balance

Reflective Label Corrector(RLC), Multi-Focal Modifier(MFM) and Head-Tail Balancer(HTB)

RLC module (Correction) corrects the missing labels along with the training and dynamically re-weights the sample weight according to the estimated class distribution.

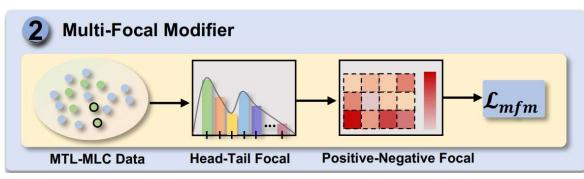

MFM module (Modification) adjusts the focal of different instances according tohead-tail and positive-negative imbalance under the extreme LT distribution.

HTB module(Balance) measures the model's optimization direction and correspondingly develops a balanced learning scheme to producestable PLT-MLC performance.

 $\underbrace{\mathcal{L}((\mathcal{S});\Theta_b)}_{\mathcal{L}(\mathcal{S})} = \underbrace{\lambda_c \cdot \mathcal{L}_{rlc}}_{\mathcal{L} tc} + \underbrace{\lambda_m \cdot \mathcal{L}_{mfm}}_{\mathcal{L} tc} + \underbrace{\lambda_b \cdot \mathcal{L}_{htb}}_{\mathcal{L} tc}$ COMIC Loss **RLC** Loss MFM Loss HTB Loss

Methods

Reflective Label Corrector (RLC):

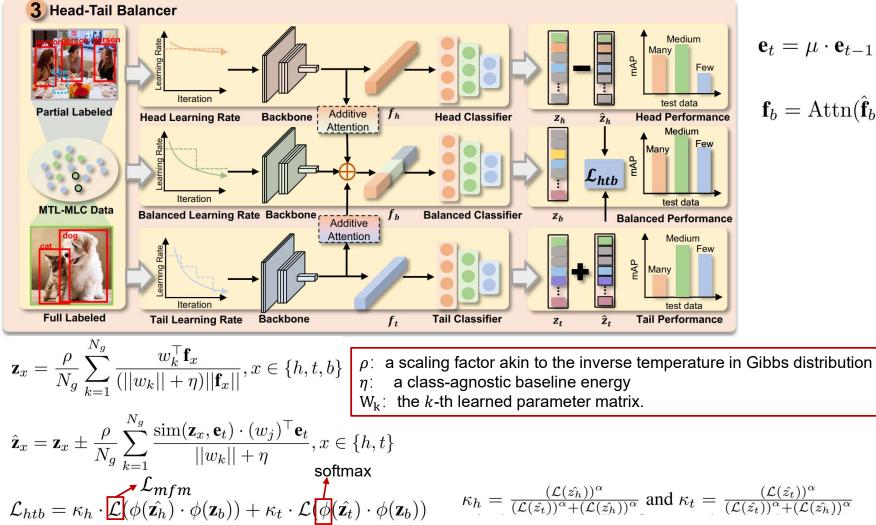


the average category possibility of past trained data with class c

$$\hat{y}_c = \begin{cases} 1, & \text{if } p_c > \max\{\tau, P_c\}, y_c = 0\\ 0, & \text{otherwise} \end{cases}$$

$$\mathcal{L}_{rlc}(p) = \begin{cases} \mathcal{L}_{mfm}^+(p), & \text{if } \hat{y} = 1\\ \mathbbm{1}_{(y=1)} \mathcal{L}_{mfm}^+(p) + \mathbbm{1}_{(\hat{y}=0)} \mathcal{L}_{mfm}^-(p), \text{otherwise} \end{cases}$$

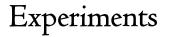
Multi-Focal Modifier (MFM) :

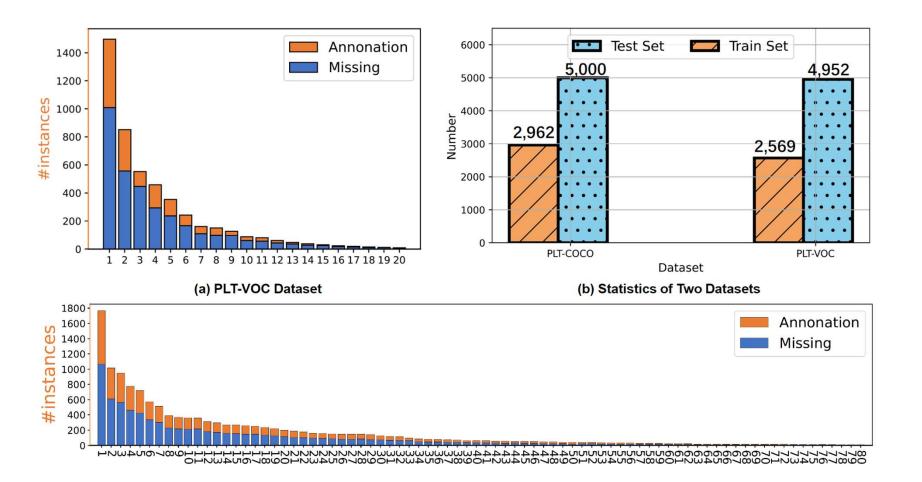

$$\mathcal{L}_{fl}(p) = \begin{cases} \mathcal{L}_{fl}^{+} = (1-p)^{\gamma} \log(p), & \text{if } y = 1\\ \mathcal{L}_{fl}^{-} = p^{\gamma} \log(1-p), & \text{if } y = 0 \end{cases}$$
$$\gamma^{(i)} = \begin{cases} \gamma^{(i)+} = \gamma_{pn}^{+} + w^{+} \cdot \gamma_{ht}^{(i)}, & \text{if } y = 1\\ \gamma^{(i)-} = \gamma_{pn}^{-} + w^{-} \cdot \underbrace{\gamma_{ht}^{(i)}}, & \text{if } y = 0 \end{cases}$$

the static class distribution D of training set with max normalization function

$$\mathcal{L}_{mfm}(p) = \begin{cases} \mathcal{L}_{mfm}^{+} = \sum_{i=1}^{C} (1-p)^{\gamma^{(i)+}} \log(p), & \text{if } y = 1\\ \mathcal{L}_{mfm}^{-} = \sum_{i=1}^{C} p^{\gamma^{(i)-}} \log(1-p), & \text{if } y = 0 \end{cases}$$

Methods


Head-Tail Balancer



the accumulated gradient
$$= \mu \cdot \mathbf{e}_{t-1} + \mathrm{sum}(g_t), \forall t = 1, \cdots, T$$

$$\mathbf{f}_b = \operatorname{Attn}(\hat{\mathbf{f}}_b, [\mathbf{f}_h, \mathbf{f}_t])) + \hat{\mathbf{f}}_b$$

Experiments

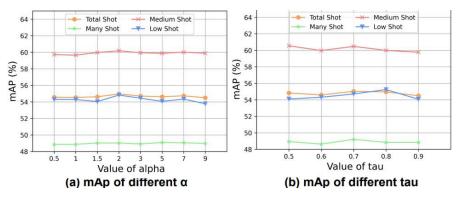

PLT-COCO Dataset PLT-VOC Dataset Category Methods $E2E^*$ Total Shot Many Shot Medium Shot Total Shot Many Shot Medium Shot Few Shot Few Shot 83.79 ± 0.41 BCE [45] 0 42.57 ± 0.11 56.67±0.19 46.40 ± 0.60 48.92 ± 0.23 67.37 ± 0.18 88.27±0.39 78.79 ± 0.14 0 51.39 ± 0.15 87.49 ± 0.18 82.82 ± 0.78 Focal [26] 41.05 ± 0.07 58.33 ± 0.12 53.58 ± 0.31 67.02±0.11 78.13 ± 0.23 MLC ASL [3] 0 41.60 ± 0.17 58.15 ± 0.15 52.67 ± 0.17 51.20 ± 0.08 67.67±0.10 87.79 ± 0.13 82.23 ± 0.55 78.35 ± 0.11 58.96 ± 0.24 DB [37] 0 44.83 ± 0.31 53.82 ± 0.47 52.16±0.36 69.22±0.28 88.56±0.42 83.72±0.35 78.86 ± 0.23 0 DB-Focal [37] 45.76 ± 0.25 59.74±0.21 53.85 ± 0.16 52.57 ± 0.27 68.96 ± 0.22 88.89 ± 0.18 83.42±0.20 78.90±0.26 LT-MLC LWS [13] 44.86 ± 0.58 58.79 ± 0.63 53.48 ± 0.51 52.86 ± 0.60 69.08±0.44 88.24 ± 0.55 83.46 ± 0.47 78.28 ± 0.49 87.58±0.35 Pseudo-Label [15] 41.41 ± 0.41 57.46±0.35 53.12 ± 0.33 51.67 ± 0.37 67.38±0.24 83.26±0.42 78.32 ± 0.30 -ML-GCN [5] 0 43.43 ± 0.53 58.46 ± 0.61 53.74 ± 0.48 52.14 ± 0.55 68.46±0.44 88.17±0.61 82.46±0.38 79.02±0.56 PL-MLC Hill [44] 0 42.50 ± 0.16 49.28 ± 0.09 68.79 ± 0.15 77.40 ± 0.22 56.89 ± 0.19 47.31 ± 0.37 86.70±0.17 78.15±0.99 P-ASL [2] 0 43.09 ± 0.05 57.67±0.07 51.75 ± 0.17 68.95 ± 0.22 87.24 ± 0.13 83.37±0.33 78.96 ± 0.16 53.46 ± 0.22 0 Head Model (Ours) 47.59 ± 0.09 59.07 ± 0.12 52.35 ± 0.28 53.30±0.19 72.91±0.28 88.59±0.31 82.12±0.27 80.70 ± 0.30 PLT-MLC Tail Model (Ours) 0 46.30 ± 0.25 58.76 ± 0.29 53.38 ± 0.14 53.09 ± 0.27 71.65±0.34 88.68±0.41 83.51±0.24 80.58±0.36 0 **COMIC** (Ours) 49.21±0.22 60.08±0.13 55.36±0.21 55.08±0.14 73.10±0.35 89.18±0.45 84.53±0.48 81.53±0.35 $1.62 \sim 8.16$ $0.34 \sim 3.41$ $0.53 \sim 8.96$ $1.78 \sim 6.16$ $0.19\sim 6.08$ $0.29 \sim 2.48$ $-0.3 \sim 6.38$ $0.83 \sim 4.13$ Improv. \uparrow --

 $E2E^*$ indicates that the PLT model is learned in an end-to-end manner. We color each row as the **best**, **second best** and **lowest score**

Missing Ratio	PLT-COCO Dataset						
	Total Shot	Many Shot	Medium Shot	Low Shot			
0%	57.07±0.09	52.21±0.11	59.98±0.12	61.12±0.24			
30%	55.80±0.17	49.97 ± 0.11	62.59±0.15	54.56 ± 0.17			
40%	54.75±0.19	$48.93 {\pm} 0.24$	60.31 ± 0.21	54.14 ± 0.21			
50%	54.69±0.15	48.74 ± 0.12	$56.68 {\pm} 0.16$	57.25±0.24			

Experiments

In-depth analysis of label correction.



Performance comparison under different missing labeled settings. 0% indicates an LT dataset that is fully labeled.

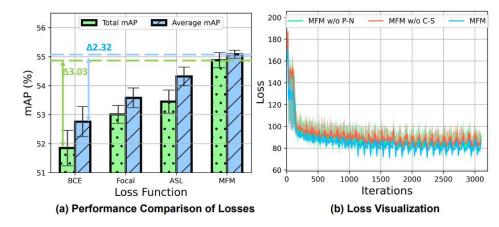
$$\mathcal{L}_{htb} = \kappa_h \cdot \mathcal{L}(\phi(\hat{\mathbf{z}}_h) \cdot \phi(\mathbf{z}_b)) + \kappa_t \cdot \mathcal{L}(\phi(\hat{\mathbf{z}}_t) \cdot \phi(\mathbf{z}_b))$$

$$\kappa_h = \frac{(\mathcal{L}(\hat{z}_h))^{\alpha}}{(\mathcal{L}(\hat{z}_t))^{\alpha} + (\mathcal{L}(\hat{z}_h))^{\alpha}} \text{ and } \kappa_t = \frac{(\mathcal{L}(\hat{z}_t))^{\alpha}}{(\mathcal{L}(\hat{z}_t))^{\alpha} + (\mathcal{L}(\hat{z}_h))^{\alpha}}$$

$$\hat{y}_c = \begin{cases} 1, & \text{if } p_c > \max\{\tau, P_c\}, y_c = 0\\ 0, & \text{otherwise} \end{cases}$$

Ablations with respect to coefficient α and τ .

Experiments


Ablation study of different modules. M,C,B represent modification, correction and balance learning

Models	Setting			PLT-COCO Dataset		
	M	C	В	Total mAP	Average mAP	Recall
-RLC		0	0	54.70±0.13	54.42 ± 0.15	85.26±0.08
-MFM	0		0	54.60 ± 0.13	$54.33 {\pm} 0.13$	84.59±0.19
-HTB	0	0		53.65 ± 0.31	53.36 ± 0.31	84.19±0.23
COMIC	0	0	0	55.08±0.14	54.88±0.19	88.19±0.22

Ablation of MFM. ↓ indicates the mAP decay

MFM	Factor	PI	T-COCO Datas	set	
P-N	H-T	Total Shot	Many Shot	Medium Shot	Low Shot
	0	54.44 (↓ 0.64)	48.65 (\ 0.56)	60.00 (↓ 0.08)	53.81 (↓ 1.55)
0		53.70 (↓ 1.38)	48.38 (↓ 0.83)	58.99 (↓ 1.09)	52.91 (\ 2.45)
0	0	55.08	49.21	60.08	55.36

MLT-MLC results using different losses

Thanks