

Bridging the Gap between Model Explanations in Partially Annotated Multilabel Classification

CVPR 2023

Problem to be solved : Multi-Label Learning

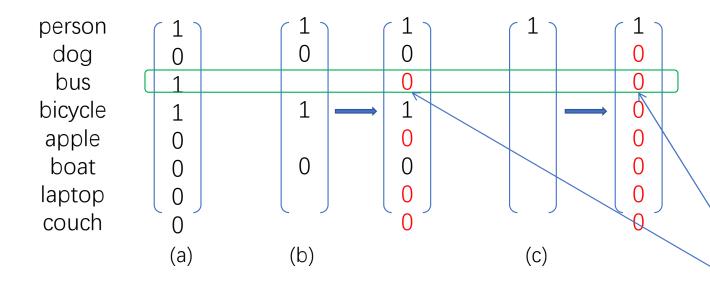
	person	dog	bus	bicycle	apple	boat	laptop	couch	
(a) 🗸	x	\checkmark	\checkmark	x	x	x	x	(a) full annotations
(b) 🗸	×	?	\checkmark	?	×	?	?	(b) partial annotations
(c) 🗸	?	?	?	?	?	?	?	(c) single positive label

Problem to be solved : Multi-Label Learning

(a) full annotations(b) partial annotations(c) single positive label

expensive to fully annotated

3


Partial annotated multi-label classification

(1) treat all unobserved labels as missing labels
(2) treat all unobserved labels as negative labels
ROLE : from 'Multi-label learning from single positive label'
LL-R : reject false negative label;
LL-Ct : correct false negative label;
LL-Cp : correct false negative label to positive label;

CAM : class activation map

Baseline approach :

Assuming unannotated labels as Negative labels (AN)

(a) full annotations(b) partial annotations(c) single positive label

false negative label

Disadvantage :

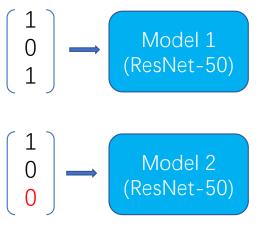
label noise (false negative label)

Baseline approach :

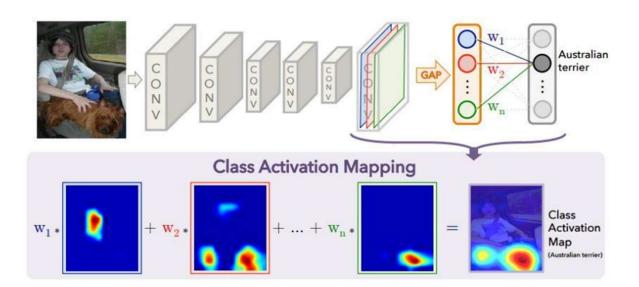
Assuming unannotated labels as Negative labels (AN)

$$\mathcal{L}_{AN} = \frac{1}{C} \left[\sum_{i \in \mathcal{I}^p} \mathcal{L}_+ + \sum_{i \in \mathcal{I}^n \cup \mathcal{I}^\phi} \mathcal{L}_- \right]$$
(1)

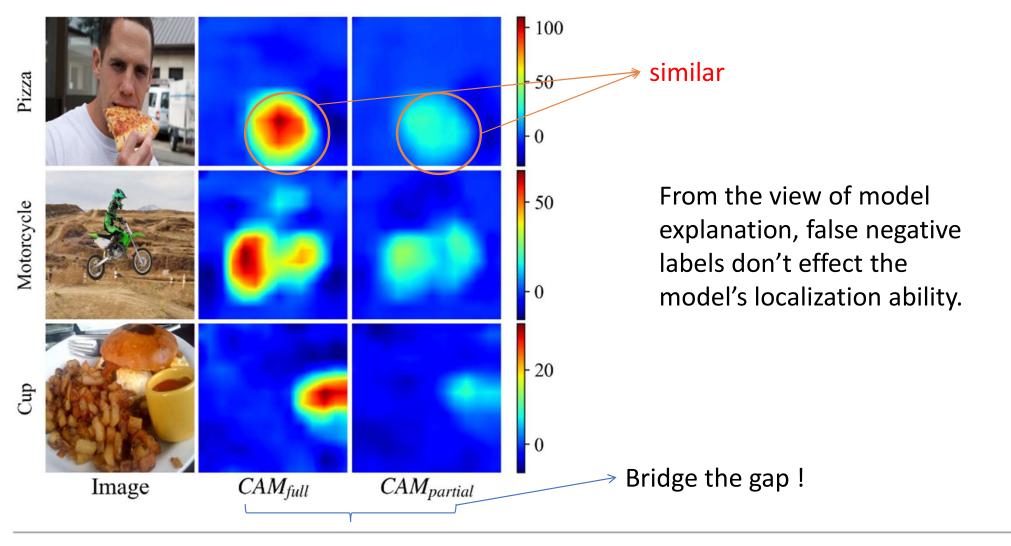
$$\mathcal{L}_{+} = -\log(\sigma(g_i)), \mathcal{L}_{-} = -\log(1 - \sigma(g_i))$$


 \mathcal{I}^{tn} true negative

 \mathcal{I}^{fn} false negative

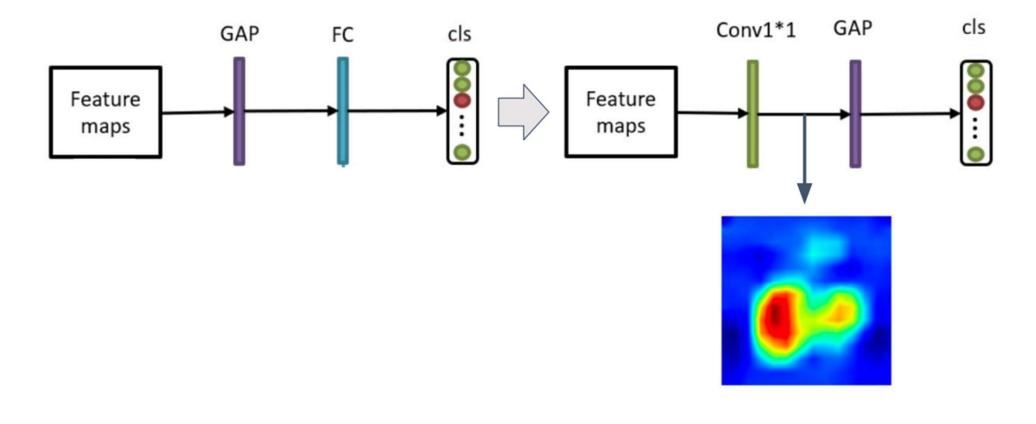

Analysis on model explanation

full annotations



partial annotations

An interesting observation



Method : CAM

1) Modify CNN classificatio network architecture

Method : CAM

instead of post-processing, but forward pass

$$oldsymbol{M}_{c}=\sum_{d=1}^{D}oldsymbol{W}_{cd}oldsymbol{F}_{d}\;,\;\;$$
 (2)

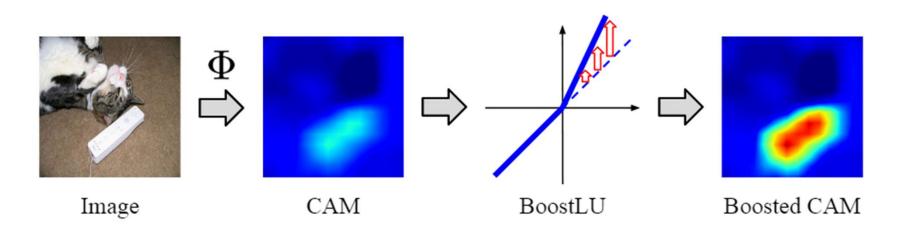
$$g_c = \frac{1}{HW} \sum_{i=1}^{H} \sum_{j=1}^{W} (M_c)_{ij}.$$
 (3)
attribution score

Pizza BoostLU(x) = max(x, αx) 0 - 50 Motorcycle 0 - 20 Cup 0 **CAM**_{partial} Image

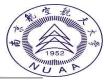
Method : BoostLU

2) Apply BoostLU on CAM element-wisely

100


- 50

Method : BoostLU



2) Apply BoostLU on CAM element-wisely

BoostLU(x) = max(x, αx), set α =5

Experiments

Several scenarios for BoostLU application

- i) Apply only in inference phase
 - -> Performance improves without additional training

BoostLU	Performance			
in inference	VOC	COCO		
	86.10	64.58		
\checkmark	87.31	66.27		

Experiments

Several scenarios for BoostLU application

ii) Apply also in training phase with large loss modification scheme

-> Performance improves further !

BoostLU	BoostLU	LL-R	Performance		
in inference	in training	in training	VOC	COCO	
			86.10	64.58	
\checkmark			87.31	66.27	
\checkmark	\checkmark	\checkmark	89.27	72.82	

Experiments : all ablation study

BoostLU	BoostLU	LL-R	Performance		
in inference	in training	in training	VOC	COCO	
			86.10	64.58	
\checkmark			87.31	66.27	
\checkmark	\checkmark		86.73	65.33	
		\checkmark	88.24	70.60	
	\checkmark	\checkmark	87.18	68.45	
\checkmark		\checkmark	88.90	70.87	
\checkmark	\checkmark	\checkmark	89.27	72.82	

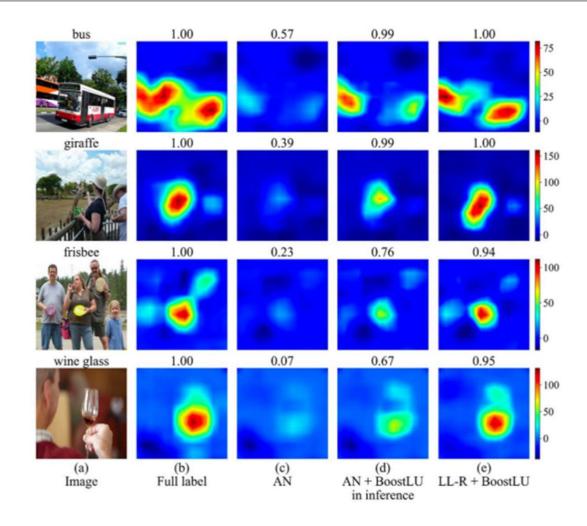
Ablation study on BoostLU and LL-R. We test seven combinations of using BoostLU and LL-R [21] on VOC and COCO datasets. Training a model with both LL-R and BoostLU and applying BoostLU during inference shows the best mAP.

Experiments : Single positive label

Methods	VOC	COCO	NUS	CUB
Full Label	89.42	76.78	52.08	30.90
AN	85.89	64.92	42.27	18.31
LS [30]	87.90	67.15	43.77	16.26
ASL [33]	87.76	68.78	46.93	18.81
ROLE [11]	87.77	67.04	41.63	13.66
ROLE + LI [11]	88.26	69.12	45.98	14.86
EM [50]	89.09	70.70	47.15	20.85
EM + APL [50]	89.19	70.87	47.59	21.84
LL-R [21]	88.27	70.70	48.76	19.56
+ BoostLU (Ours)	89.29	72.89	49.59	19.80
LL-Ct [21]	87.79	70.29	48.08	19.06
+ BoostLU (Ours)	88.61	71.78	48.37	19.25
LL-Cp [21]	87.44	70.27	47.92	19.21
+ BoostLU (Ours)	87.81	71.41	48.61	19.34

Designed by 4 multi-label classification datasets:

Experiments : Large-scale partial label (OpenImages V3 dataset)



Each group includes 1,000 classes without overlapping. Group 1 has the smallest annotations, and Group 5 has the most

Methods	Group 1	Group 2	Group 3	Group 4	Group 5	All Classes
CNN-RNN [39]	68.76	69.70	74.18	78.52	84.61	75.16
Curriculum Labeling [13]	70.37	71.32	76.23	80.54	86.81	77.05
IMCL [17]	70.95	72.59	77.64	81.83	87.34	78.07
P-ASL [2]	73.19	78.61	85.11	87.70	90.61	83.03
LL-R [21]	77.76	79.07	81.94	84.51	89.36	82.53
+ BoostLU (Ours)	79.28	80.81	83.32	85.63	90.27	83.86
LL-Ct [21]	77.76	79.18	81.97	84.46	89.51	82.58
+ BoostLU (Ours)	79.43	80.75	83.41	85.70	90.41	83.94
LL-Cp [21]	77.49	79.22	81.89	84.51	89.18	82.46
+ BoostLU (Ours)	79.53	81.04	83.40	85.85	90.39	84.04

Experiments

Qualitative results

ΤΗΑΝΚS