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Problem to be solved : Multi-Label Learning

(a) full annotations

(b) partial annotations

(c) single positive label
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Problem to be solved : Multi-Label Learning

(a) full annotations

(b) partial annotations

(c) single positive label
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False Negative 

expensive to fully annotated 
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Related work : Partially annotated multi-label classification

Partial annotated multi-label classification
(1) treat all unobserved labels as missing labels
(2) treat all unobserved labels as negative labels

ROLE : from ‘Multi-label learning from single positive label’
LL-R : reject false negative label;
LL-Ct : correct false negative label;
LL-Cp : correct false negative label to positive label;

CAM : class activation map
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Method : partially annotated multi-label classification 

Baseline approach :
Assuming unannotated labels as Negative labels (AN)
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(a) full annotations
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(c) single positive label

Disadvantage :
label noise (false negative label)
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Analysis on model explanation

Model 1
(ResNet-50)
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An interesting observation 

From the view of model 
explanation, false negative 
labels don’t effect the 
model’s localization ability. 

similar 

Bridge the gap !
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Method : CAM

1) Modify CNN classificatio network architecture
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Method : CAM

(2)

instead of post-processing, but forward pass

(3)

attribution score



11

Method : BoostLU

2) Apply BoostLU on CAM element-wisely

BoostLU(x) = max(x, αx)
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Method : BoostLU

2) Apply BoostLU on CAM element-wisely

BoostLU(x) = max(x, αx), set α=5
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Experiments

i) Apply only in inference phase
-> Performance improves without additional training

Several scenarios for BoostLU application
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Experiments

ii) Apply also in training phase with large loss modification scheme
-> Performance improves further !

Several scenarios for BoostLU application
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Experiments : all ablation study

Ablation study on 
BoostLU and LL-R. We 
test seven combinations 
of using BoostLU and LL-
R [21] on VOC and COCO 
datasets. Training a 
model with both LL-R and 
BoostLU and applying 
BoostLU during inference 
shows the best mAP.
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Experiments : Single positive label

Designed by 4 multi-label 
classification datasets:

PASCAL VOC

MS COCO 2014

NUSWIDE

CUB
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Experiments : Large-scale partial label (OpenImages V3 dataset)

Each group includes 1,000 classes without overlapping. Group 1 has the smallest annotations, 
and Group 5 has the most
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Experiments

Qualitative results
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