

Nanjing University of Aeronautics and Astronautics

Causal Learning in Machine Learning

Tang K , et al. Long-tailed classification by keeping the good and removing the bad momentum causal effect[J]. Advances in Neural Information Processing Systems, 2020, 33: 1513-1524.

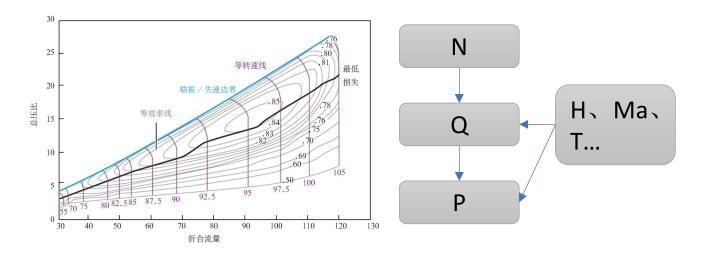
Hu X, et al. Distilling causal effect of data in class-incremental learning[C]//Proceedings of the IEEE/CVF conference on Computer Vision and Pattern Recognition. 2021: 3957-3966.

Motivation

As for **physical model**

• Explainability

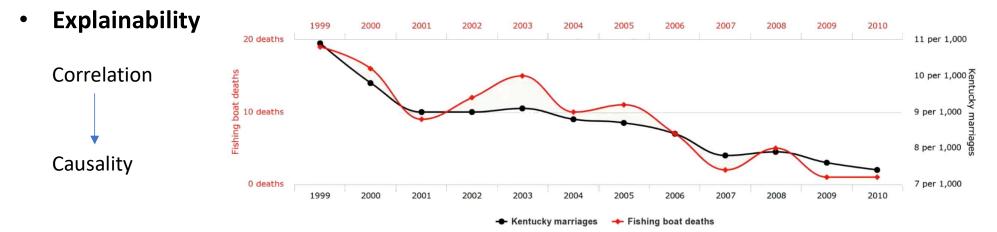
We cannot understand AI model

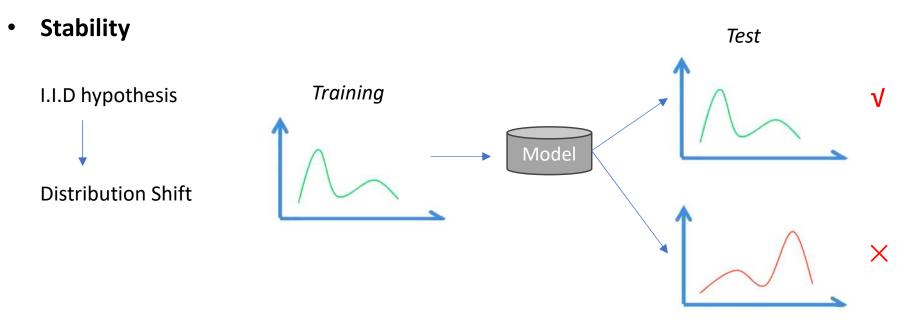


• Stability

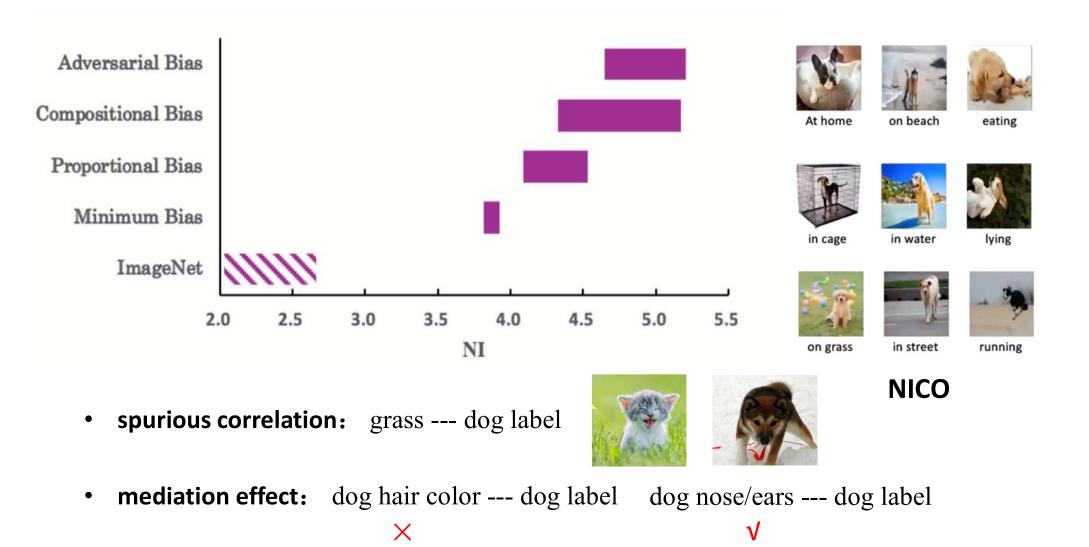
We cannot trust AI model

As for **physical model**





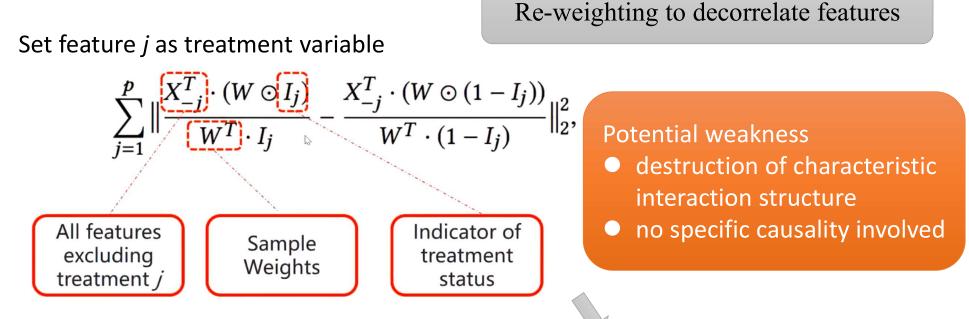
As for visual field



He Y, et al. Towards non-iid image classification: A dataset and baselines. Pattern Recognition, 2021.

Background

Causal Regularizer



e.g. logistic regression

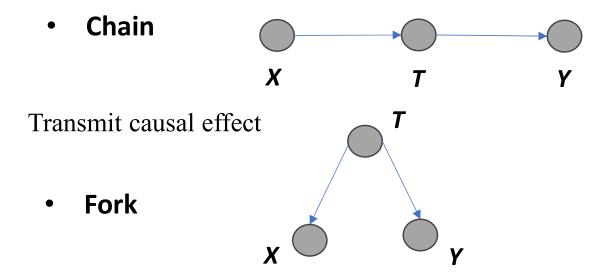
continuous variables case

$$\min \begin{array}{l} \sum_{i=1}^{n} W_{i} \cdot \log(1 + \exp((1 - 2Y_{i}) \cdot (x_{i}\beta)))), \\ s.t. \quad \sum_{j=1}^{p} \left\| \frac{X_{-j}^{T} \cdot (W \odot I_{j})}{W^{T} \cdot I_{j}} - \frac{X_{-j}^{T} \cdot (W \odot (1 - I_{j}))}{W^{T} \cdot (1 - I_{j})} \right\|_{2}^{2} \leq \gamma_{1}, \\ W \geq 0, \quad \|W\|_{2}^{2} \leq \gamma_{2}, \quad \|\beta\|_{2}^{2} \leq \gamma_{3}, \quad \|\beta\|_{1} \leq \gamma_{4}, \\ (\sum_{k=1}^{n} W_{k} - 1)^{2} \leq \gamma_{5}, \end{array}$$

$$\sum_{j=1}^{p} \left\| \mathbf{X}_{,j}^{T} \boldsymbol{\Sigma}_{W} \mathbf{X}_{,-j} / n - \mathbf{X}_{,j}^{T} W / n \cdot \mathbf{X}_{,-j}^{T} W / n \right\|_{2}^{2}$$

Zheyan Shen, et al. Causally Regularized Learning on Data with Agnostic Bias. ACM MM, 2018. Kun Kuang, et al. Stable Prediction with Model Misspecification and Agnostie Distribution Shift. AAAI, 2020.

Data relationships



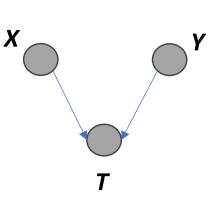
T : mediator

T : confounder

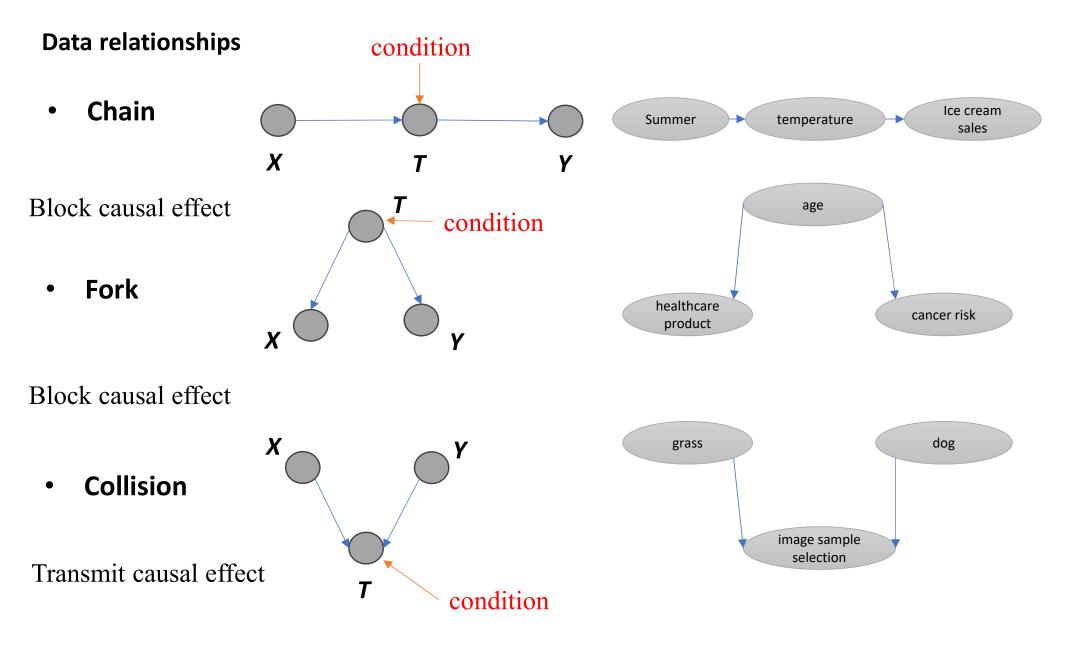
Transmit causal effect

Collision

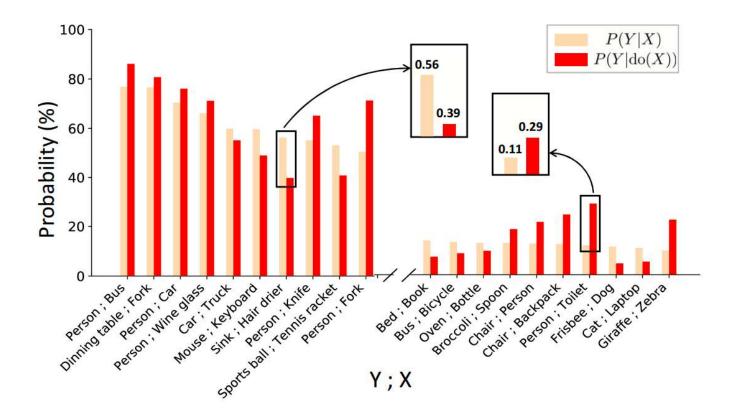
Block causal effect



T : collider

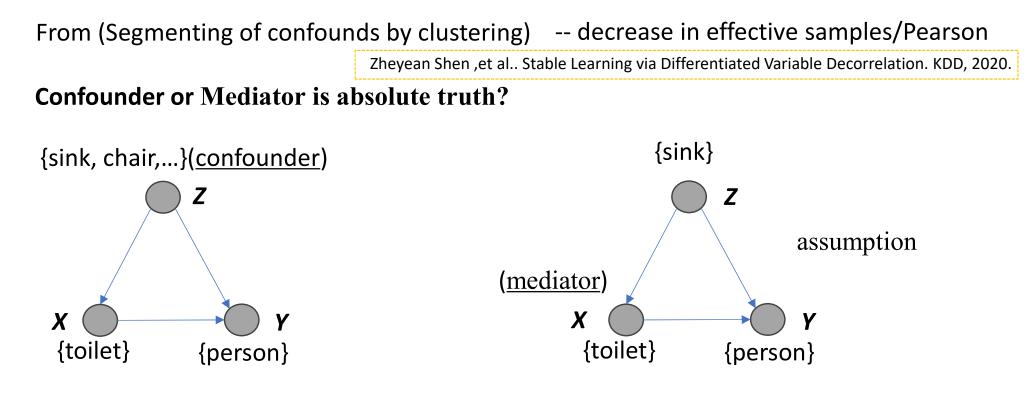


Pearl's theory of causal graph



Simpson's Paradox: (from Wikipedia) a phenomenon in probability and statistics in which a trend appears in several groups of data but **disappears or reverses** when the groups are combined.

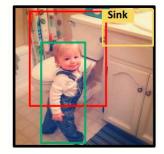
Some thoughts



Context (objects and backgrounds)

- purely bad (backgrounds) –de-confounder
- containing good and bad –TDE
- purely good (component)

How to define/or use relative effect to revise model



Solid points:

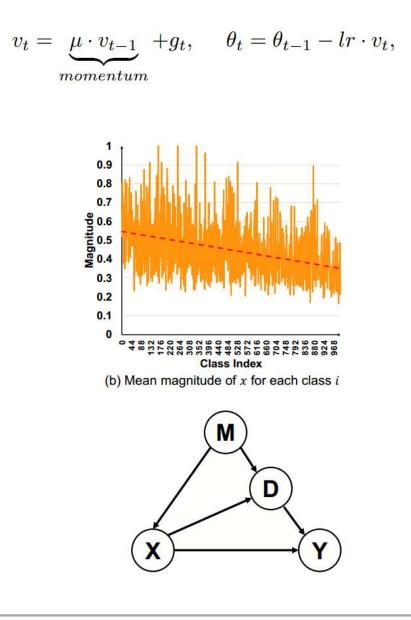
- Shifting the Perspective of Intervention to Momentum
 - Constructing the causal graph --- separating out the mediation
 - **Potential contribution** on the long tail of features
- Compliance with the end-to-end learning framework
 - **De-confounder** training stage
 - Total Direct Effect (TDE) inference stage
- Unifying the long-tail learning methods at the time under the causal framework

Constructing the causal graph :

Variables : $\{X, M, D, Y\}$

1) $M \rightarrow X$:

The **backbone parameters** used to **generate** feature vectors X, are **trained under** the effect of M.



Constructing the causal graph :

Variables : $\{X, M, D, Y\}$ 2) (M, X) \rightarrow D : \ddot{x} discriminative feature projection on head direction $d = \hat{d}cos(x, \hat{d}) \|x\|$ d the **unit vector** of exponential moving average features 3) $X \rightarrow D \rightarrow Y \& X \rightarrow Y$: Effect of X can be **disentangled** into an indirect (mediator) and a direct effect.

By the way, Orthogonality is equivalent to disentanglement?

 $v_t = \underbrace{\mu \cdot v_{t-1}}_{t-1} + g_t, \quad \theta_t = \theta_{t-1} - lr \cdot v_t,$ momentumOrthogonal decomposition $x = \ddot{x} + d$ x x $\hat{d} = \overline{x}_T / \|\overline{x}_T\|$, where $\overline{x}_t = \mu \cdot \overline{x}_{t-1} + x_t$ linear approximation Μ D D

How to realize the target:

- a) de-confounder
 - the Backdoor adjustment formula
 - inverse probability weighting (IPW)

$$P(Y=y|do(X=x))=\sum_{z}rac{P(Y=y,X=x,Z=z)}{P(X=x|Z=z)}$$

• muti-head strategy splits the feature space

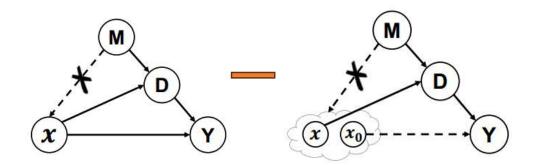
$$\begin{split} \overbrace{\mathbf{X}}^{\mathbf{M}} \overbrace{\mathbf{Y}}^{\mathbf{M}} \overbrace{\mathbf{Y}}^{\mathbf{M}} \overbrace{\mathbf{X}}^{\mathbf{M}} \overbrace{\mathbf{Y}}^{\mathbf{M}} \overbrace{\mathbf{X}}^{\mathbf{M}} \overbrace{\mathbf{Y}}^{\mathbf{M}} \\ P(Y = i | do(X = \mathbf{x})) &= \sum_{m} P(Y = i | X = \mathbf{x}, M = m) P(M = m) \\ &= \sum_{m} \frac{P(Y = i, X = \mathbf{x} | M = m) P(M = m)}{P(X = \mathbf{x} | M = m)}. \end{split}$$

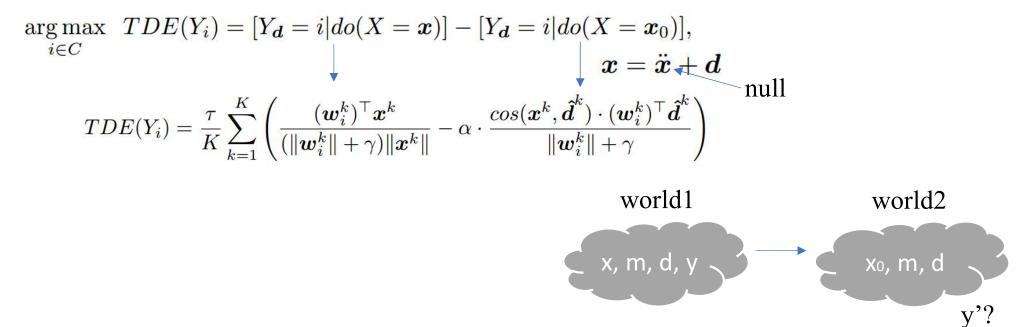
$$P(Y = i | do(X = \mathbf{x})) \approx \frac{1}{K} \sum_{k=1}^{K} [\widetilde{P}(Y = i, X = \mathbf{x}^{k} | M = m)].$$
Sample
$$\widetilde{P}(Y = i, X = \mathbf{x}^{k}) \propto E(i, \mathbf{x}^{k}; \mathbf{w}_{i}^{k}) = \tau \frac{f(i, \mathbf{x}^{k}; \mathbf{w}_{i}^{k})}{[g(i, \mathbf{x}^{k}; \mathbf{w}_{i}^{k})]}, \\ &\|\mathbf{x}^{k}\| \cdot \|\mathbf{w}_{i}^{k}\| + \gamma \|\mathbf{x}^{k}\| \end{split}$$

How to realize the target:

b) TDE inference

not remove placebo effect totally





Unifying the long-tail learning methods :

Μ

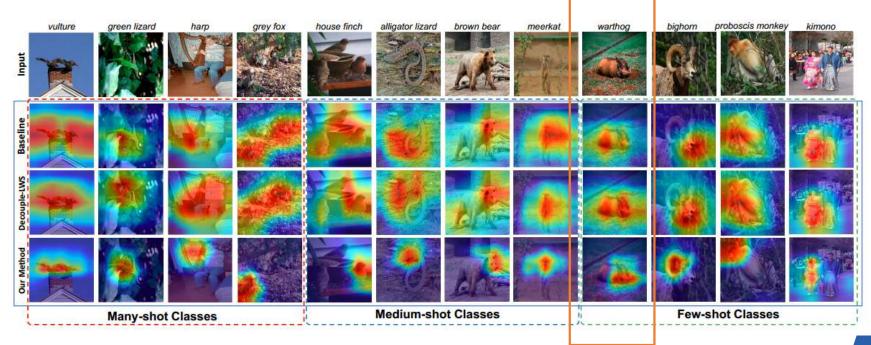
D

CDE: remove d [Y | X = x, do(D = d)]NDE: get a fair d $[Y | X = x, D = d_0] - [Y | X = x_0, D = d_0]$) TDE: get d with good part $[Y_{D=d} | X = x)] - [Y_{D=d} | X = x_0]$

狮鹫 (尾部类) =狮子 (头部类) +鹰 (头部类)

Experiments:	Dataset	Long-tailed CIFAR-100			Long-tailed CIFAR-10		
	Imbalance ratio	100	50	10	100	50	10
• Top-1 accuracy	Focal Loss [28]	38.4	44.3	55.8	70.4	76.7	86.7
	Mixup [56]	39.5	45.0	58.0	73.1	77.8	87.1
	Class-balanced Loss [13]	39.6	45.2	58.0	74.6	79.3	87.1
	LDAM [12]	42.0	46.6	58.7	77.0	81.0	88.2
	BBN [10]	42.6	47.0	59.1	79.8	82.2	88.3
	(Ours) De-confound	40.5	46.2	58.9	71.7	77.8	86.8
	(Ours) De-confound-TDE	44.1	50.3	59.6	80.6	83.6	88.5

• Visualized activation maps



Unifying the long-tail learning methods :

Methods	Two-stage	Re-balancing $(do(D))$	De-confound $(do(X))$	Direct Effect
Cosine [50, 51]	-	-	~	-
LDAM [12]	-	~	~	CDE
OLTR [9]	~	~	-	NDE
BBN [10]	~	~	-	NDE
Decouple [11]	~	~	-	NDE
EQL [17]	-	 ✓ 	2	
Our method		.	 ✓ 	TDE

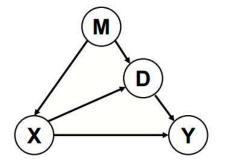
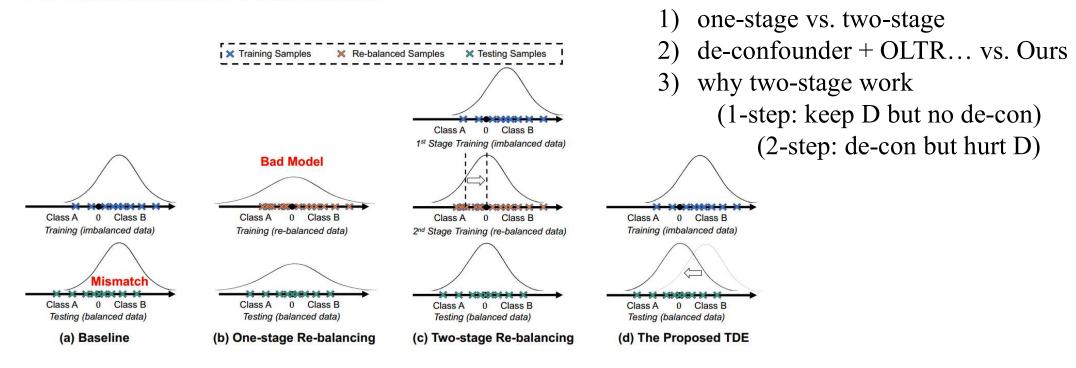


Table 1: Revisiting the previous state-of-the-arts in our causal graph. CDE: Controlled Direct Effect. NDE: Natural Direct Effect. TDE: Total Direct Effect.



Methods

Overall

43.7

41.9

48.7

44.4

47.3

49.6

49.4

49.9

45.0

47.6

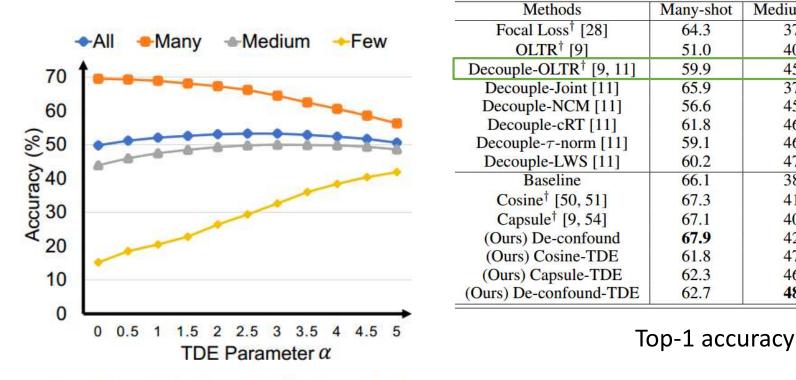
48.6

50.5 50.6

51.8

46.5 =

Experiments: (ImageNet-LT)



Accuracy for different TDE parameter α

muti-head — play little role 1) α — nonlinear 2)

Medium-shot

37.1

40.8

45.8

37.5

45.3

46.2

46.9

47.2

38.4

41.3

40.0

42.7

47.1

46.9

48.8

Few-shot

8.2

20.8

27.6

7.7

28.1

27.4

30.7

30.3

8.9

14.0

11.2

14.7

30.4

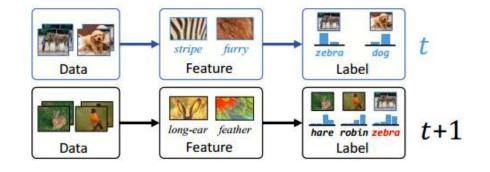
30.6

31.6

$$TDE(Y_i) = \underbrace{\frac{\tau}{K}}_{k=1}^{K} \left(\frac{(\boldsymbol{w}_i^k)^\top \boldsymbol{x}^k}{(\|\boldsymbol{w}_i^k\| + \gamma)\|\boldsymbol{x}^k\|} - \alpha \cdot \frac{\cos(\boldsymbol{x}^k, \boldsymbol{\hat{d}}^k) \cdot (\boldsymbol{w}_i^k)^\top \boldsymbol{\hat{d}}^k}{\|\boldsymbol{w}_i^k\| + \gamma} \right)$$

Nonlinear systems cannot get the exact TDE

Solid points:



• Active usage of interventions to **create relevant**

Catastrophic forgetting problem

• Data replay effects without consuming memory

• Removal of momentum effects in incremental processes

Class imbalance problem

Under the causal framework:

• Forgetting Problem

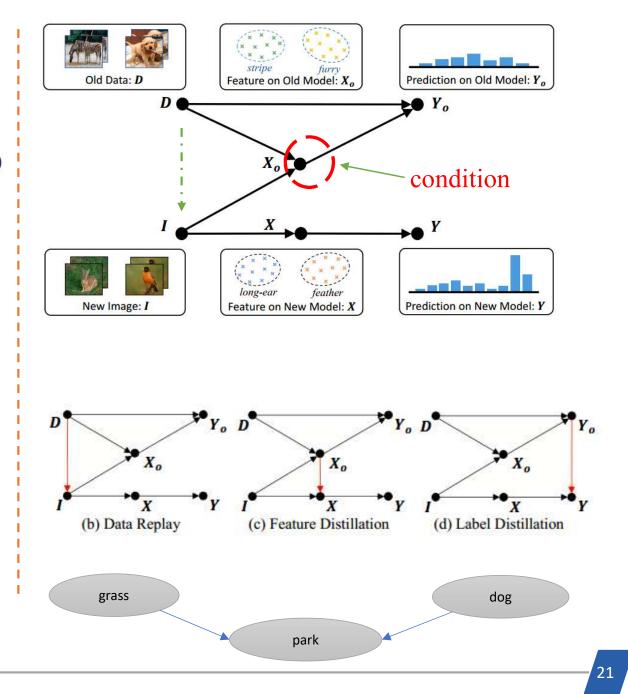
$$\begin{array}{l} \textit{Effect}_{D} = P(Y = y \mid do(D = d)) - P(Y = y \mid do(D = 0)) \\ = P(Y = y \mid D = d) - P(Y = y \mid D = 0), \\ = P(Y = y) - P(Y = y) = 0. \end{array} \\ \textbf{TE} \end{array}$$

• Data Replay

$$\begin{split} & \textit{Effect}_{D} = \sum_{I} P(Y \mid I, D = d) \ P(I \mid D = d) \\ & - \sum_{I} P(Y \mid I, D = 0) \ P(I \mid D = 0) \\ & = \sum_{I} P(Y \mid I) \ (P(I \mid D = d) - P(I \mid D = 0)) \neq 0, \end{split}$$

• Feature & Label Distillation

$$Effect_D = \sum_X P(Y | X) (P(X | D = d) - P(X | D = 0)) \neq 0$$



How to realize the target: Y condition **past** Effect₁ = $\sum_{I} P(Y|I) (P(I|D=d) - P(I|D=0))$ on X_a **now** Effect_D = $\sum_{I} P(Y|I, X_o) (P(I|X_o, D=d) - P(I|X_o, D=0))$ Algorithm 1 One CIL step with Colliding Effect Distillation $= \sum_{I} P(Y \mid I) W(I, X_o, D), \quad \text{similarity}$ 1: Input : \mathcal{I}, Ω_o > new training data, old model 2: **Output** : Ω metric ⊳ new model ▷ initialize new model 3: $\Omega \leftarrow \Omega_o$ 4: $\mathcal{X}_o \leftarrow \Omega_o(\mathcal{I}) \quad \triangleright$ represent new images in old features $Effect_{D} = \sum_{i \in \{N_{1}, N_{2}, \dots, N_{K}\}} P(Y \mid I = i) W_{i},$ 5: repeat for $I \in \mathcal{I}$ 6: $\mathcal{N}_K \leftarrow \text{K-NEAREST-NEIGHBOR}(\Omega_o(I), \mathcal{X}_o)$ where $\{W_{N_1}, \ldots, W_{N_K}\}$ subject to 7: $P(Y|N_1), \ldots, P(Y|N_K) \leftarrow \Omega(\mathcal{N}_K)$ 8: $W_1, \ldots, W_K \leftarrow \text{WEIGHTASSIGN}(K) \triangleright \text{Eq. (7)}$ 9: $Effect \leftarrow \sum_{i=1}^K W_i P(Y | N_i; \Omega)$ $\begin{cases} W_{N_1} \ge W_{N_2} \ge \dots \ge W_{N_K} \\ W_{N_1} + W_{N_2} + \dots + W_{N_K} = 1 . \end{cases}$

Some experiments on CIFAR-100 with 5-step:

9:	Effect $\leftarrow \sum_{j=1}^{n} W_j P(Y N_j)$
10:	$\Omega \leftarrow \arg\min(-\log(Effect))$
	Ω

11: until converge

R	Baseline	Top1	Top5	Top10	Rand	Bottom	Variant1	Variant2
5	50.76	55.92	58.12	58.53	54.88	41.70	58.22	58.41
10	61.68	63.51	63.66	64.04	53.80	51.41	63.54	63.97
20	63.57	64.76	64.93	65.18	64.16	57.07	64.87	65.22

How to realize the target:

Static
$$\hat{d} = \overline{x}_T / \|\overline{x}_T\|$$
, where $\overline{x}_t = \mu \cdot \overline{x}_{t-1} + x_t$

Increment
$$h = (1-\beta) h_{t-1} + \beta h_t$$
 _{Step}

For each image in I:

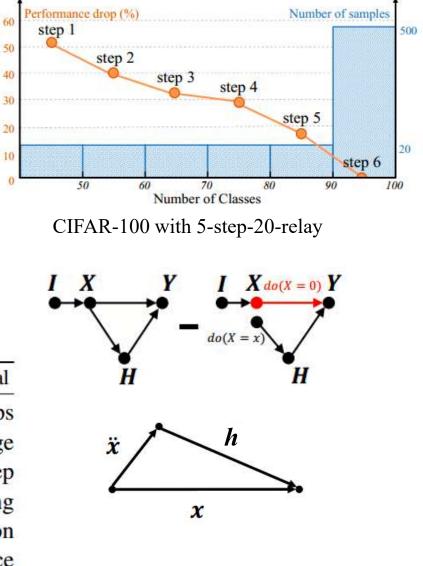
$$[Y | I = i] = [Y | do(X = x)] - \alpha \cdot [Y | do(X = 0, H = h)]$$

= [Y | X = x] - \alpha \cdot [Y | X = x^h],

Tips: α and β were trained in the finetuning stage using a re-sampled subset containing balanced old and new data

Alg	orithm	2 CIL with Increment	al Momentum Eff	ect Removal
1:	Input	$: \mathcal{I}_1, \mathcal{I}_2, \dots, \mathcal{I}_T$	▷ training data	a of T steps
2:	Input	: I	⊳ a te	sting image
3:	For $t \in$	$1, 2, \ldots, T$	⊳ea	ch CIL step
4 :	$\alpha, \beta,$	$h_t \leftarrow MOVINGAVE$	$ERAGE(\mathcal{I}_t; \ \Omega_t)$	⊳ training
5:	$h \leftarrow$	$(1-\beta) h_{t-1} + \beta h_{t-1}$	$h_t $ bhea	ad direction
6:	$X \leftarrow$	FEATUREEXTRAC	TOR(I)	▷ inference
7:	$Y \leftarrow$	- CLASSIFIER $(X -$	$x^h)$	⊳ Eq. (8)

not the same as regular long-tail problems

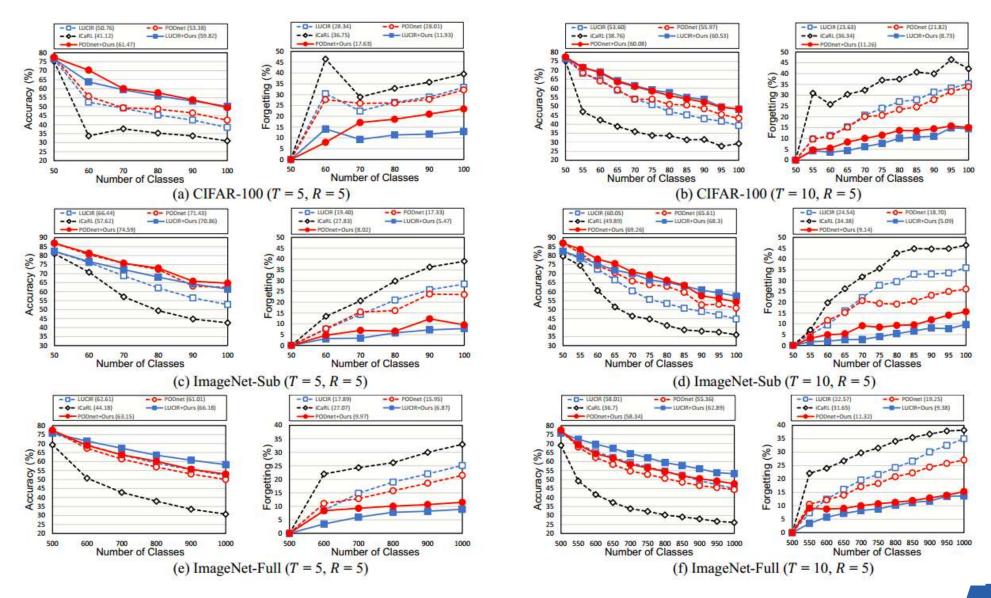


Experiments:

	Methods	CIFA	R-100	ImageN	Net-Sub	ImageN	Net-Full
	wiethous	T=5	10	5	10	5	10
5	LUCIR [†]	50.76	53.60	66.44	60.04	62.61	58.01
(1) R=.	+ DDE (ours)	59.82+9.06	60.53+6.93	70.86+4.42	68.30+8.26	66.18+3.57	62.89+4.88
	PODNet [†]	53.38	55.97	71.43	64.90	61.01	55.36
	+ DDE (ours)	61.47+8.09	60.08+4.11	74.59+3.16	69.26+4.36	63.15+2.14	58.34+2.98
0	LUCIR [†]	61.68	58.30	68.13	64.04	65.21	61.60
=	+ DDE (ours)	64.41+2.73	62.00+3.70	71.20+3.07	69.05+5.01	67.04 +1.83	64.98 +3.38
(2) R = 10	PODNet [†]	61.40	58.92	74.50	70.40	62.88	59.56
	+ DDE (ours)	63.40+2.00	60.52+1.60	75.76+1.26	73.00+2.60	64.41+1.53	62.09+2.53
	LUCIR [†]	63.57	60.95	70.71	67.60	66.84	64.17
	+ DDE (ours)	65.27+1.70	62.36+1.41	72.34+1.63	70.20+2.60	67.51+0.67	65.77+1.60
	PODNet[†]	64.70	62.72	75.58	73.48	65.59	63.27
0	+ DDE (ours)	65.42+0.72	64.12+1.40	76.71+1.13	75.41+1.93	66.42+0.83	64.71+1.44
(3) R=20	iCaRL [†] [35]	57.17	52.27	65.04	59.53	51.36	46.72
3) F	BiC [47]	59.36	54.20	70.07	64.96	62.65	58.72
C	LUCIR [13]	63.17	60.14	70.84	68.32	64.45	61.57
	Mnemonics [25]	63.34	62.28	72.58	71.37	64.54	63.01
	PODNet [9]	64.83	63.19	75.54	74.33	66.95	64.13
	TPCIL [42]	65.34	63.58	76.27	74.81	64.89	62.88

Average Incremental Accuracies

Experiments:



Ablation:

Distillation of Colliding Effect (DCE) incremental Momentum Effect Removal (MER)

	Methods	R = 5	10	20
	Baseline [13]	50.76	61.68	63.57
	+All	59.82+9.06	64.41+2.73	65.27+1.70
Accuracy (%)	+DCE	58.53+7.77	64.04+2.36	65.18+1.61
	+MER	53.55+2.79	63.40+1.72	64.43+0.86
	Baseline [13]	28.34	17.51	14.08
F	+All	11.93-16.41	6.23-11.28	7.11-6.97
Forgetting (%)	+DCE	16.82-11.52	10.16-7.35	8.41-5.67
	+MER	17.45-10.89	12.15-5.36	10.01-4.07

Under no replay data

Mahada	CIFA	R-100	ImageNet-Sub		
Methods	T = 5	10	5	10	
Baseline	45.57	32.72	58.55	45.06	
Ours	59.11+13.54	55.31+22.59	69.22+10.67	65.51+20.45	

Nanjing University of Aeronautics and Astronautics

MIIT Key Laboratory of Pattern Analysis & Machine Intelligence

THANKS