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What is Zero-Shot Reinforcement Learning?

Zero-shot RL: problem statement. The goal of zero-shot RL is to compute a compact represen-
tation &£ of the environment by observing samples of reward-free transitions (s;, a;, ;) in this
environment. Once a reward function is specified later, the agent must use £ to immediately produce
a good policy. via only elementary computations without any further planning or learning. Ideally,
for any downstream task, the performance of the returned policy should be close to the performance
of a supervised RL baseline trained on the same dataset labeled with the rewards for that task.

Loose Limitations: How to define Zero-Shot RL with planning assisted?
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Offline goal-conditioned Reinforcement Learning with ICM-like exploration?
Advantages: Easy to Implement.
Disadvantages: goal-conditioned policy learned depends on the behavior policy.
Diffusion Model for trajectories with rewards conditioned?
Advantages: No need for data preprocess and subtle design.
Disadvantages: Low interpretability and solidity.

Goal-conditioned or Skill-based Planning with landmarks?

Advantages: Long-range planning and High interpretability.
Disadvantages: Consists of too many components and cost expensive.

Q values and V values decoupled into successor representation and reward representation?
Advantages: Easy to implement and Solid theoretical analysis

Disadvantages: Reward Space is infinite in continuous state space.
Perspective: View different tasks as different reward functions motivated.
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KON FE—, BFESICXY NS EENRE, BIEAXITS
M= (S,A,p,r,7vy) KIXEEReSs,al Ak /EEiIreward func Wi, ©5s,afvi§iA.,

@ﬂ(.‘j, ﬂ.) = Eﬂ [Gt | St = 5, At = {1] where Gt - Z:i(} ’}"'iRt_H'.

7' (s) € argmax Q7 (s, a);
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I Generalization Examples PEII‘NP_[:
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I How to learn Successor Features

FAST TASK INFERENCE WITH
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VARIATIONAL INTRINSIC SUCCESSOR FEATURES

P(s. a, F{T"‘))TW.

Q"(s,a) =

2]

Maximize mutual information between w and pi_w

m(s) = argmax max (s, a,e(m;))

Tw = argmax max Q™ (s, a).
F(0) = 1(2: f (7=,
F(0) = —H(2|f(7r))

= Zp(s._ z) log p(z|

—H(z|s) =) p(s,z)logp(=|s)
= z;( 2)log p(z]s) + me. 2)
= Zﬁ Zp s.2) log p(2]s)
-ZP(@ )log g(zs) +ZP JEL(p(:s)llq(-|s))

)) = H(z) — H(z|f(7=

s) = E .[log p(z|s)].

log g(z]s)

= Zp(s,z)logq[zls}

z)logg(z ZP(-‘&Z) log q(z[s)

(12)

>Zp{s‘ )log g(z|s)

IE =[log g(z]s)]
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Agent e ) I
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Figure 1: VISR model diagram. In practice w; is also fed into % as an input, which also
allows for GPI to be used (see Algorithm 1 in Appendix). For the random feature baseline,
the discriminator g is frozen after initialization, but the same objective is used to train b.

_ Aimed at maximizing the reward collected policy under reward z (also w)

r(s,a,s') = ¢(s,a,s) " w, What is predefined, View reward as a fixed point we can denote that.

I
|
I
I
|
|
I
|
Functional I
|
I
I
|
I
|
|

log g(w|s) = ¢(s)' w.
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Algorithm 1: Training VISR

Randomly Initialize ¢ network // L2 normalized output layer
Randomly Initialize 9 network [/ dim(output) = #A x dim(W)
for e := 1,00 do

sample w from L2 normalized N(0, I(dim(W))) // uniform ball

Q(-, alw) « Y(-, a, w) w,Vae€ A

fort:=1.7 do

Receive observation s; from environment
if using GPI then
Qm(-,a) + Q(-,alw)¥a € A
for i :=1.10 do
sample w; from VMF(p = w,k = 5)
Qmi(-,a) « Y(-,a,w;) w,Va € A

end
a; + e-greedy policy based on max; Q™ (s, -)
else
| a; + egreedy policy based on Q(s;. -|w)
end

Take action a;, receive observation s; .y from environment
a' = argmax, ¢(s;11,a,w) w

¥ = ¢(s¢) + v (se41.0',w)

lossy = 3. (Vi(se, ar, w) — y;)?

loss, = —o(s) Tw // minimize Von-Mises NLL
Gradient descent step on ¢ and ¢ // minibatch in practice
end

end
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I Decouple-Successor States ParN E

Q(s0, a0) = r(s0,a0) + 72?(3'130, ap) Z m(a'|s)Q(s',a’)

s'eS acA
= 7(80,a9) + Z p(s'|sg,a0)m(a'|s)Q(s, a’)

(s',a')eX <A

= r(sp,a0) +7 Y. p(s'sa|s0,00,m)Q(S', )

(s'a')eXxA

= 1(80,a9) + Z p(s',a'|sg, a0, m)(r(s',a") + v Z p(s",ad"|d,ad',m)Q(s",a"))

(s'a')eXxA (s",a")eXxA
§ : t § : trod ! 1o
— 7‘(30,(10) =T Y p (3 y @ ‘80,0,0,71')7“(3 70')
t>=1 (s,a)eXxA

Z Z Fytpt(sr7a’,‘807a077r)r(3,701,)

t>=0(s',a')eXx A

M™(sg.ag, X) := Z v Pr((s;,a1) € X | 80, ag, ™) Q: (5.a) = ZH,_H, ﬂ-fﬁ{.‘-j. a. 8, H'r:I'I'{.'-j'r. H'r'}

=0
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M7 (s8g, a0, X) := Z v Pr((ss,a0) € X | 30, @o, ™)

>0

Assume a goal-conditioned env where the goal is s; , a; from initial state s, , a,. M is equal to Q(s; , a;).
So M is actually the discount distance between arbitrary state-action pairs under policy .

al
// B N ¥ Y // \\\
a0 sO s /» a0
\\ B /* | A k\ ,v,//
al

s0,a0 0
4—2y -7 2y—7° i v’

s0,a1 1 2 4— 4y 42 %y — A2 2y — A2 0

s1,a0 4(1-7) Va '@ 4~ -y" By-7 0

s1.a1 4—=2y—~q* 4—2y—79" 7 4—dy++* q

4—4y+v">27y—7° 2y — 42 > ~2 4—2y—4% > 42

If we want s1,a1 from initial sO, We can obtain from the M: Q(s0,a0)<Q(s0,a1), So we need to choose a1.

I""Notably, the M is conditioned by the random policy, but can generalize to the goal-conditioned tasks.
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Like the calculation of Q value, we can use dynamic process to calculate M.

Backward: M = 7 + ")/MP Forward: M=7+ "yPM

Define a target update of M via the Bellman equation, M := Id +~vPMj, .
Define the loss between M and M via J(0) := % || My — M“"Hi using the
norm (1). Then the gradient step on 6 to reduce this loss is

d0pTp = Ogring(s. 8) + 1ig(s1, s) (v Ggring( s, s) — Fgring(s1,8))

- aﬁ"-"(ﬂ\]h&?:ﬁ‘r = E#ﬁ-p. s'~P(s.ds'), sa~p "‘"}Eﬁl&’: {3' S}

+ Ogring, (5, 82) (g, (8, 52) — 1hg, (5,52))] . (21)
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re(s1,52) = Fa,.(s1)' Ba,(52)

Definition 1 (Forward-backward representation). Let Z = RY be a representation space, and let p
be a measure on 8 % A. A pair of functions F: S x Ax Z — Zand B: S x A — Z, together with
a parametric family of policies (7.).c z, is called a forward-backward representation of the MDP
with respect to p, if the following conditions hold for any z € Z and (s,a),(sg.ap) € § x A:

7.(s) = argmax F(s,a,2) 2, M7™(sq,aq,ds, da) = F(sq,aq,2) B(s,a)p(ds,da) (2)

i

where M™ is the successor measure defined in (1), and the last equality is between measures.

Theorem 2 (FB representations encode all optimal policies). Ler (F, B, (x.)) be a forward-backward
representation of a reward-free MDP with respect to some measure p.

Then, for any bounded reward function r: S x A — R, the following holds. Set
ZR = f r(s,a)B(s,a)plds, da). (3)

assuming the integral exists. Then 7, is an optimal policy for reward v in the MDP. Moreover; the
optimal Q-function Q* for reward v is Q*(s,a) = F(s.a.zr) zx.
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« It provides a direct representation of the value function at every state,

without learning an additional model of V. Namely,

Vis) = F(s]TB{H}, B(R) := E,.,[rs B(s)] (47)
where the “reward representation” B(R) can be directly estimated by
an online average of B(s) weighted by the reward rg at s. This is a
direct consequence of (17). For instance, with sparse rewards, each

time a reward is observed, the value function is updated everywhere.
10

This point applies to successor states, but not to goal-dependent value
functions, which cannot handle arbitrary rewards.

It simplifies the sampling of a pair of states (s, s3) needed for forward
TD. Indeed, the forward TD update (21) factorizes as an expectation
over s, times an expectation over sy (Section 6.2 below), which can be
estimated independently. The same applies to backward TD. This can
potentially reduce variance a lot, and even allows for purely “trajectory-
wise” online estimates using only the current transition s — s', without
sampling of another independent state sa. (Once more, this works for
successor states but not for goal-dependent value functions, since in
that case the transitions s — s’ depend on s3.)

S TERpElEy This could be useful for other purposes.

e Even in the tabular case, when the state space is discrete and unstruc-

tured, this provides a form of prior or generalization between states
(based on a low-rank prior for the successor state operator). States
that are linked by the MDP dynamics get representations F and B
that are close.

It has some of the properties of the second-order methods of Section 7,

without their complexity. This is proved in Appendix F.1.

The shortcomings are as follows:

mates the successor state operator by an operator of rank at
most £. This is never an exact representation unless the representation
dimension 7 is at least the number of distinct states.

« The best rank-r approximation of (Id —yP) ™! erases the small singular

values of PP: thus this representation will tend to erase “high frequencies”
in the reward and value function, and provide a spatially smoother
approximation focusing on long-range behavior.

(such as a “checkerboard” reward).

This can be expected: learning a reward-agnostic object such as M
cannot work equally well for all rewards. For these reasons, it may be
useful to use a mixed model for the value function with the FB model
as a baseline, such as

V,(s) = F(s)'B(R) + v,(s) (48)

where F' and B are learned via successor states, B(R) is as in (47),
and ¢ is learned via ordinary TD on the remainder. The F'B part will
catch reward-independent, long-range behavior, while the v, part will
be needed to catch high frequencies in a particular reward function.
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Algorithm 1 FB algorithm: Unsupervised Phase

1: Inputs: replay buffer D , Polyak coefficient «v . 1 a probability distribution over R?, randomly
initialized networks Fy and B,.. learning rate rj, mini-batch size b, number of episodes E, number
of gradient updates N, temperature 7 and regularization coefficient A.

2: form=1,...do

3: [*Collect L' episodes
4:  forepisodee=1....E do
3 Sample z ~ v
6: Observe an initial state s,
7: fori=1....do
& Select an action g, according to some behaviour policy (e.g the =-greedy with respect to
Fy(s:,a, 3)T: )
9: Observe next state s;41
10: Store transition (¢, a¢. $;+1) in the replay buffer D
11: end for
12:  end for
13: /*Perform N stochastic gradient descent updates
14: for n=1...N do
15: Sample a mini-batch of transitions {(s;.a;, s;41) }ier © Dof size || = b.
16: Sample a mini-batch of target state-action pairs {(s',a!)},c; C D of size |I| = b.
17: Sample a mini-batch of {z; };c; ~ v of size |I| = b.
18: Set 7, (- | 8ip1) = softmax(Fy- (si41,+, 2) " 2:/7)
19: Lo,w)=
2
ﬁl‘i Z;_jep (}"ﬂ‘("fhﬂ'n zi)TBu(S;"ﬂ;) - 7Zrz€.-‘l. ]T:L(L! | *‘-"f+1) ¥ F‘ﬂ - (“"IE—F!.?G" zi)TB.u:' {*"‘:;':a;])_—
i Eief -P1ﬂ{s:" . Z"}TBM(H,'. ﬂ,‘)
20: F* Compute orthonormality regularization loss
21: fms(wj = Flg ZL_J‘EI? B, (s, a; )Tstop—gradient(ﬁw{s; ; u,; 3]

stop-gradient(5, (s, ch)—rﬂu(ﬁ‘; . a; )}—% 2 icr Balsi, g ) "stop-gradient(B,,(s;,a;))

22: Update § +— 8 — nV3.2 (0, w) and w + w — nV (L0, w) + A - Lraglw))
23:  end for

24: [*Update target network parameters

25: 0 +—af~+(1l-a)d

26 w o —ow 4+ (1 -a)w

27: end for
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Y™ (s0,a9) = E [Ztgg Y o(se41) | S0s o, ?T} ,

xQ“(s,a) =E" [E:C;t?’i_t¢i+1 1St =5, A = U] L w =" (s, &)T‘Wa w = 'J"ewa?“d/qb

7.(8) = arg max F(s.a.z) z. M7™= (sg.ag.ds,da) = F{su.m}.:}-B{ﬂ.u};}{{ls.du} zi = E[r(s,a)B(s,a)]

i

If given the same representation for ® and B in finite space, the two Q values will be totally same!
Where F is just a discount matrix to calculate successor features. It means FB = .

But the two values differs when it is just a unsupervised feature extraction. And the procedure of
inference is totally different.
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Figure 5: The approximations to the optimal value functions for the reward functions in
Figure 4: 49 randomly sampled reward functions learned by VISR, Figure 4, computed by VISR through GPI on 10 randomly sampled policies.
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Figure 3: Heatmap of max, F(s,a, zr) ' zg for
zr = B(¥) Left: d = 25. Right: d = 75.

Figure 5: Trajectories generated by the F'B
policies for the task of reaching a target position
(star shape Y7 while avoiding forbidden positions
(red shape @)

Figure 4: Contour plot of
maxqea F(s,a, zR)TzR in Continuous Maze.
Left: for the task of reaching a target while
avoiding a forbidden region, Right: for two
equally rewarding targets.

Figure 6: Trajectories generated by the F'B
policies for the task of reaching the closest among
two equally rewarding positions (star shapes ).
(Optimal Q-values are not linear over such mix-
tures.)
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Figure 14: Continuous Maze: Contour plots plot of max,e 4 F(s,a, zr) " zg (left) and trajectories
of the = greedy policy with respect to F(s.a, zr)" zg with = = 0.1 (right). Left: for the task of
reaching a target while avoiding a forbidden region, Middle: for the task of reaching the closest goal
among two equally rewarding positions, Right: choosing between a small, close reward and a large,
distant one..
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Figure 15: Ms. Pacman: Trajectories of the £ greedy policy with respect to F(s, a, zg) " zg with
& = 0.1 (right). Top row: for the task of reaching a target while avoiding a forbidden region, Middle
row: for the task of reaching the closest goal among two equally rewarding positions, Bottom row:

choosing between a small, close reward and a large, distant one..

Figure 18: Continuous maze: Visualization of FB embedding vectors after projecting them in
two-dimensional space with t-SNE. Left: the states to be mapped. Middle: the F' embedding. Right:
the B embedding.
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