

Boosting Offline Reinforcement Learning with Action Preference Query

Qisen Yang^{*1} Shenzhi Wang^{*1} Matthieu Gaetan Lin² Shiji Song¹ Gao Huang¹

^{*}Equal contribution ¹Department of Automation, BNRist, Tsinghua University, Beijing, China ²Department of Computer Science, BNRist, Tsinghua University, Beijing, China. Correspondence to: Gao Huang <gaohuang@tsinghua.edu.cn>.

ICML2023

Objective:
$$J(\pi) = \mathbb{E}_{s_0 \sim \rho_0, a \sim \pi(\cdot|s), s' \sim P(\cdot|s, a)} [\sum_{t=0}^T \gamma^t r(s_t, a_t)]$$

$$V^{\pi}(s) = \mathbb{E}_{s_{t},a_{t}\sim\rho_{\pi}}\left[\sum_{t=0}^{T}\gamma^{t}r(s_{t},a_{t}) | s_{0} = s\right]$$

$$Q^{\pi}(s,a) = \mathbb{E}_{s_{t},a_{t}\sim\rho_{\pi}}\left[\sum_{t=0}^{T}\gamma^{t}r(s_{t},a_{t}) | s_{0} = s, a_{0} = a\right]$$

$$Q^{\pi}(s,a) = r(s,a) + \gamma \mathbb{E}_{s'\sim P(\cdot|s,a)}V^{\pi}(s')$$

Bellman function

$$V^{\pi}(s) \qquad \qquad Q^{\pi}(s,a) = r(s,a) + \gamma \mathbb{E}_{s' \sim P(\cdot|s,a)} \mathbb{E}_{a' \sim \pi(\cdot|s')} [Q(s',a')]$$
$$= \mathbb{E}_{a \sim \pi(\cdot|s)} [r(s,a) + \gamma \mathbb{E}_{s' \sim P(\cdot|s,a)} V^{\pi}(s')]$$

policy iteration $\begin{cases} \text{policy evaluation: use trajectories of } \pi \text{ to evaluate } Q \text{ and } V \\ \text{policy improvement: use } Q \text{ and } V \text{ to update } \pi \quad \text{e.g } \pi_{k+1}(a|s) = \operatorname{argmax}_a Q^{\pi_k}(s,a) \end{cases}$

Disadvantage of RL : sample inefficiency

Because of the large amount of interaction with the environment, RL is not suitable for some high-risk environments, such as autonomous driving and healthcare.

The main idea of offline RL is keeping pessimism, that is, learning a policy which is close to the behavior policy.

TD3+BC:

$$\pi = \operatorname*{argmax}_{\pi} \mathbb{E}_{(s,a)\sim\mathcal{D}}[Q(s,\pi(s))] \longrightarrow \pi = \operatorname*{argmax}_{\pi} \mathbb{E}_{(s,a)\sim\mathcal{D}}\left[\lambda Q(s,\pi(s)) - \left((\pi(s)-a)^2\right)\right]$$

Motivation

Boosting Offline Reinforcement Learning with Action Preference Query

- Some actions in the dataset are of low quality, which could cause erroneous estimate problem.
- Action preference queries are easier to obtain in real-world environments.
- In some high-stake scenarios, limited online interactions can be inaccessible when online fine-tuning.

1. Action Preference Query

while training, query the preferred actions according to ranking criterion

ranking criterion $l_i = (\pi(s_i) - a_i)^2$ the preferred action $\tilde{a}_i = G(s_i, a_i, \pi(s_i)) = \underset{a \in \{a_i, \pi(s_i)\}}{\arg \max} Q^*(s_i, a)$

Method

2. Pseudo Query with RankNet

a query dataset
$$D_q = \{(s_k, a_k, \pi^k(s_k), \tilde{a}_k) \mid k = 1, 2, \cdots, M\}$$

ranking function f_r
RankNet $o_k = f_r(s_k, a_k) - f_r(s_k, \pi^k(s_k)))$ $P_k = e^{o_k}/(1 + e^{o_k})$
 $C_k = C(o_k) = -\bar{P}_k \log P_k - (1 - \bar{P}_k) \log(1 - P_k)$

pseudo query
$$G(s_i, a_i, \pi(s_i)) = \underset{a \in \{a_i, \pi(s_i)\}}{\arg \max} f_r(s_i, a)$$

3. Adjusted Policy Constraint

$$\pi = \operatorname*{argmax}_{\pi} \mathbb{E}_{(s,a)\sim\mathcal{D}} \left[\lambda Q(s,\pi(s)) - (\pi(s) - \underline{a})^2 \right] \implies \pi = \operatorname*{arg\,max}_{\pi} \mathbb{E}_{(s,a)} \left[\lambda Q(s,\pi(s)) - (\pi(s) - \underline{\tilde{a}})^2 \right]$$

Method

Proposition 3.1 (Perfect preference case). Consider the case with perfect preferences, i.e., $\forall (s, a)$, the state-action value function $Q^*(s, a)$ used for the action preference query is accurate. Then π_β and $\tilde{\pi}_\beta$ satisfy:

$$\eta(\tilde{\pi}_{\beta}) - \eta(\pi_{\beta}) \approx \mathbb{E}_{s \sim \mathcal{D}} \left[Q^*(s, \tilde{\pi}_{\beta}(s)) - Q^*(s, \pi_{\beta}(s)) \right] \ge 0.$$
⁽⁷⁾

Proposition 3.2 (Imperfect preference case). Consider the case where preferences probably have errors. Denote the accurate state-action value function as $Q^*(s, a)$ and the faulty function as $\hat{Q}^*(s, a)$. Then $\forall \hat{Q}^*$ satisfying $D_{\text{TV}}^{\tilde{\pi}_{\beta}}(\hat{Q}^*, Q^*) \leq \tilde{\alpha}, D_{\text{TV}}^{\pi_{\beta}}(\hat{Q}^*, Q^*) \leq \alpha$, it holds that

$$\eta(\tilde{\pi}_{\beta}) - \eta(\pi_{\beta}) \gtrsim \mathbb{E}_{s \sim \mathcal{D}} \Big[\hat{Q}^*(s, \tilde{\pi}_{\beta}(s)) \\ - \hat{Q}^*(s, \pi_{\beta}(s)) \Big] - 2(\tilde{\alpha} + \alpha) \overline{\rho}_{\pi_{\beta}},$$
(8)

where $\overline{\rho}_{\pi_{\beta}} = \sup\{\rho_{\pi_{\beta}}(s), s \in \mathcal{S}\} \in \left[\frac{1}{|\mathcal{S}_{\mathcal{D}}|(1-\gamma)}, \frac{1}{1-\gamma}\right]$ ($|\mathcal{S}_{\mathcal{D}}|$ denotes the number of different states in \mathcal{D}).

Algorithm 1 Offline-with-Action-Preferences **Require:** Offline dataset \mathcal{D} , query dataset \mathcal{D}_q , training steps N_{train} , query intervals M_{inter} , query limit K_{total} . **Ensure:** Policy π after optimization. Initialize policy π and RankNet f_r . Let the preferred actions $\tilde{a}_i = a_i, a_i \in \mathcal{D}$. for $t = 1 \rightarrow N_{\text{train}}$ do Update the policy π by Equation (6). if $t \mod M_{\text{inter}} = 0$ then Select $\frac{K_{\text{total}}M_{\text{inter}}}{N_{\text{train}}}$ samples from the offline dataset \mathcal{D} according to the ranking criterion. Conduct action preference query by Equation (2). Add queried samples into the query dataset \mathcal{D}_{q} . for epoch = $0, 1, \dots$, until convergence do Train the RankNet f_r with the query dataset \mathcal{D}_q by Equation (3). end for Conduct pseudo queries on the rest of the samples in the offline dataset \mathcal{D} by Equation (4).

end if

end for

Experiment

Dataset	Offline	Online	Online-Mix	Offline-to-Online	OAP
halfcheetah-random-v2	11.1 ± 1.3	19.2 ± 4.1	28.3 ± 2.1	32.3 ± 1.9	24.0 ± 1.6
hopper-random-v2	8.7 ± 1.6	14.5 ± 12.5	10.1 ± 0.4	8.6 ± 1.2	8.8 ± 1.8
walker2d-random-v2	1.8 ± 1.5	1.0 ± 2.5	2.2 ± 1.5	7.7 ± 8.0	5.1 ± 5.1
halfcheetah-medium-v2	48.1 ± 0.2	19.2 ± 4.1	48.1 ± 0.2	49.2 ± 0.2	56.4 \pm 4.3
hopper-medium-v2	55.8 ± 1.2	14.5 ± 12.5	58.4 ± 1.7	57.8 ± 2.0	82.0 ± 6.6
walker2d-medium-v2	83.2 ± 0.5	1.0 ± 2.5	79.2 ± 9.9	85.1 ± 0.9	85.6 ± 1.2
halfcheetah-medium-replay-v2	44.9 ± 0.1	19.2 ± 4.1	46.0 ± 0.4	48.3 ± 0.3	53.4 ± 1.9
hopper-medium-replay-v2	57.2 ± 10.2	14.5 ± 12.5	48.4 ± 3.4	76.3 ± 13.3	98.5 ± 2.5
walker2d-medium-replay-v2	81.1 ± 2.8	1.0 ± 2.5	76.7 ± 14.1	85.6 ± 1.7	84.3 ± 2.7
halfcheetah-medium-expert-v2	85.4 ± 3.3	19.2 ± 4.1	82.2 ± 5.2	94.5 ± 0.6	83.4 ± 5.3
hopper-medium-expert-v2	88.7 ± 2.9	14.5 ± 12.5	97.0 ± 7.6	102.5 ± 4.5	85.9 ± 6.6
walker2d-medium-expert-v2	110.9 ± 0.6	1.0 ± 2.5	110.1 ± 0.8	110.8 ± 0.4	111.1 ± 0.6
Gym Average	$\textbf{56.4} \pm 2.2$	$\textbf{11.6} \pm \textbf{6.4}$	57.2 ± 3.9	63.2 ± 2.9	64.9 ± 3.3
antmaze-umaze-v0	94.4 ± 2.7	0	0	72.8 ± 36.8	90.4 ± 5.2
antmaze-umaze-diverse-v0	51.0 ± 16.8	0	0	62.5 ± 31.2	$75.0\ \pm 19.0$
antmaze-medium-play-v0	1.4 ± 0.8	0	0	0	62.0 ± 10
antmaze-medium-diverse-v0	1.0 ± 1.9	0	0	0.3 ± 0.4	54.5 ± 23.3
antmaze-large-play-v0	0	0	0	0	0
antmaze-large-diverse-v0	0	0	0	0	9.4 ± 8.4
AntMaze Average	24.6 ± 3.7	0	0	22.6 ± 11.4	48.6 ± 11.0
pen-human-v1	84.8 ± 11.2	4.3 ± 7.4	8.5 ± 10.1	79.1 ± 14.5	101.2 ± 11.5
pen-cloned-v1	56.2 ± 16.3	4.3 ± 7.4	57.2 ± 29.5	66.8 ± 11.1	73.5 ± 13.0
Adroit Average	70.5 ± 13.7	4.3 ± 7.4	32.8 ± 19.8	72.9 ± 12.8	87.4 ± 12.2
Average	48.3 ± 3.8	7.4 ± 4.6	37.6 ± 4.3	52.0 ± 6.4	62.2 ± 6.5

Experiment

模式识别与神经计算研究组 PAttern Recognition and NEural Computing

what if queries were focused instead of spaced

Dataset	OAP	OAP (inf)	OAP (w/RN)
HC-r	24.0 ± 1.6	22.0 ± 1.4	11.0 ± 1.1
Hop-r	8.8 ± 1.8	13.2 ± 7.4	8.1 ± 0.8
W-r	5.1 ± 5.1	2.3 ± 2.0	1.9 ± 0.9
HC-m	56.4 ± 4.3	59.2 ± 1.5	48.2 ± 0.3
Hop-m	82.0 ± 6.6	92.8 ± 4.1	45.9 ± 1.5
W-m	85.6 ± 1.2	86.6 ± 0.3	84.8 ± 2.4
HC-mr	53.4 ± 1.9	51.3 ± 0.6	28.4 ± 3.1
Hop-mr	98.5 ± 2.5	101.9 ± 2.0	31.6 ± 3.5
W-mr	84.3 ± 2.7	84.9 ± 9.9	74.8 ± 5.5
HC-me	83.4 ± 5.3	84.1 ± 3.2	84.3 ± 5.3
Hop-me	85.9 ± 6.6	92.2 ± 8.2	80.6 ± 2.6
W-me	111.1 ± 0.6	109.4 ± 1.5	111.0 ± 0.4
Avg.	64.9 ± 3.3	66.7 ± 3.5	50.9 ± 2.3

necessity for RankNet

Thanks