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Self-Supervised Learning (SSL)

High-quality representation learning is a fundamental task in machine learning.
Tremendous number of visual recognition models have achieved promising
performance by learning from large-scale annotated datasets. However, a great
deal of challenges exist in collecting large-scale datasets with annotations, e.g.,
label noise, high cost and privacy concerns. To address these issues, self-
supervised learning (SSL) is proposed to learn generic representations without
manual annotation. Recent progress in visual self-supervised learning shows
remarkable potential and achieves comparable results with supervised learning.
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Among these SSL methods, a common underlying idea is to extract invariant

feature representations from different augmented views of the same input
image.

Contrastive learning is one of the most popular self-supervised learning
frameworks and has achieved great success in recent years.
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Without the need of negatives, BYOL and Simsiam adopt an extra predictor to
map the embedding z to the prediction p and minimize their negative cosine
similarity of them.
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A carefully-designed data augmentation
strategy is an essential part of the above self-
supervised learning frameworks.

SImMCLR and InfoMin empirically investigate the
impact of different data augmentations and
observe that SSL benefits more from strong
data augmentations than supervised learning.

(a) Standard view (b) Multi-crop view

SWAV proposes the multi-crop strategy, which
achieves significant performances on
downstream tasks.
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we propose a mosaic representation learning framework (MosRep) consisting
of a new data augmentation strategy, which can enrich the contextual

background of each small crop and encourage the “local-to-global”
correspondences.
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Given an input image x;, we generate two standard views and M small crops by
three separate augmentation operators t4, t* and t5.

£ = tUwg), &5 =1"(w), &F=t1(z), #9455 o TP
We randomly shuffle all small crops from images in a batch and divide them
into groups. We set up M crops in each group and ensure that the crops in
each group come from different input images. Then, we compose the crops of
each group into a single view, termed as the mosaic view x}, and record the
coordinates (t, [, b,r) of each small crop relative to x; .
z; = Compose(M;), M;={zj;|[ieN ‘:il
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ParN.C

Since the spatial position of each crop is fixed in the mosaic view x; , the
model can easily memorize the position, resulting in over-fitting. In order to
tackle this dilemma, we conduct the view jitter operation on the mosaic view.
We first sample offsets of the mosaic view from a beta distribution g(a, a) with
two identical parameters «.

Ng=8-m, ANg=p@-u, u, v ~ Ba, @)

We set a < 1, which indicates a U-shaped distribution. In this way the mosaic
view is more likely to be jittered in a relatively wider range with larger offsets.

" 1,0, r") = (t + Ay, l + Az, b+ Ay, r + Ax)
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Given two standard views x; , x¥ and a mosaic view x7 , an encoder F(-) is
used to extract the feature h of them.

W= F(z]), #f=F@f), &=r@ah
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We adopt a Rol Align operator to extract the feature of each small crop in the
mosaic view.
All features are mapped into an embedding space by a projector g(-).

B=glhd), =gl 27=90L)
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MoCo-v2

BYOL

= exp(sim(zY, 2F) /7)
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Datasets 1) ImageNet-100 2) ImageNet-1K

Architectures We adopt the ResNet-50 model as our encoder. We build on
two different frameworks, MoCo-v2 and BYOL.

Data Augmentation During pre-training, we adopt the data augmentation used
in MoCo-v2 and BYOL for the standard view. As for the mosaic view, we
generate M = 4 small crops with 112 x 112 input size, and other data
augmentations are the same with MoCo-v2 and BYOL.



I Experiment

Linear Probing, Nearest Neighbor

ParN.C

Method ‘

ImageNet-100

ImageNet-1K

| Linear 1-NN 5-NN | Linear 1-NN 5-NN
Supervised \ 85.8 85.3 94.5 | 765 74.9 90.2
SimCLR 2 - = 68.3 = =
SwAV e = = 69.1 = =
SimSiam - - - 70.0 - -
MSF g = = 71.4 = =
MoCo-v2 80.9 Ja1 90.9 67.7 55.7 78.6
MoCo-v2* 83.8 75,7 91.9 69.8 56.0 80.0
MosRep (Ours) 85.7 78.2 92.6 72.3 61.7 81.9
BYOL 82.3 79.5 92.1 724 66.1 85.0
BYOL* 83.2 78.9 91.8 74.7 69.6 86.6
MosRep (Ours) 84.7 30.9 92.4 76.2 70.4 874
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MosRep shows a considerable improvement over the strong baseline on both
IN-100 and IN-1K datasets, which demonstrates that the performance gain is
not simply from more small crops.

omputing
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ImageNet-1K (1%)

ImageNet-1K (10%)

Method
Top-1 Top-5 Top-1 Top-5

SimCLR 44.8 - 59.5 -
SwAV 52.5 - 67.2 -
SimSiam 46.8 - 62.4 -
MoCo-v2 43.5 70.9 58.9 82.8
MoCo-v2* 454 139 60.8 84.9
MosRep (Ours) 52.8 78.7 65.7 87.5
BYOL 54.1 18.9 66.9 87.5
BYOL.” 58.4 81.3 68.8 88.9
MosRep (Ours) 60.0 82.7 70.2 89.5

Impressively, when we build our proposed MosRep on the MoCo-v2, we
achieves considerable improvements over the strong baseline with both 1%

and 10% labels.
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Linear probing transfer learning

Method CIFAR 10 | CIFAR 100 | STL 10 | Food 101 | Flower 102 | DTD | Pets | Cars
Supervised 90.7 13.5 97.0 73.0 835.9 67.2 | 919 | 47.9
MoCo-v2 90.7 72.7 95.6 71.4 82.6 68.1 | 81.7 | 424
MoCo-v2* 90.6 124 96.8 72.0 78.3 69.8 | 80.5 | 35.9
MosRep (Ours) 91.5 74.5 97.1 74.3 84.5 71.3 | 84.5 | 44.8
BYOL 92.4 77.1 96.8 72.9 87.8 70.3 | 88.3 | 56.5
BYOL™ 93.5 78.8 97.5 oo 92.0 71.6 | 91.0 | 65.0
MosRep (Ours) 93.7 78.2 97.8 T3 90.9 72.5 | 91.2 | 63.0

Although BYOL is a state-of-the-art self-supervised learning framework, which
achieves excellent transfer performances on eight datasets, our approach can
improve the generalization performance on most datasets, even outperforming
the IN-1K supervised model across the board.
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COCO Object Detection &
Instance Segmentation
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Cityscapes Instance Segmentation

Computing

ImageNet-100

ImageNet-1K

ImageNet-100

ImageNet-1K

Method Method
| APbb APmk | APbb APm.Ic | Apmk Apgr(t,]k ‘ APmk‘ AP%P.

Supervised | 372 o % | 389 354 Supervised | 29.4 54.6 | 32.9 59.6
MoCo-v2 37.6 34.1 39.8 36.0 MoCo-v2 32.2 58.3 337 60.5
MoCo-v2* 38.2 34.6 40.4 36.6 MoCo-v2* 32.8 599 34.0 61.0
MosRep (Ours) 39.0 35.3 40.6 36.6 MosRep (Ours) 334 61.0 34.7 64.0
BYOL 38.3 34.7 40.4 36.7 BYOL 28.2 56.5 334 62.4
BYOL* 38.5 35.0 40.9 37.1 BYOL* 295 58.0 339 63.5
MosRep (Ours) 38.6 35.2 41.1 37.2 MosRep (Ours) 30.0 57.3 34.2 63.8

Our MosRep can consistently increase

the ability of detection and
segmentation on the MoCo-v2 and
BYOL frameworks.

Each pretrained model is transferred to
Mask R-CNN R50-FPN model,
subsequently finetuned on Cityscapes

train set and evaluated on Cityscapes

val set.
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Ablations

@ Diff Range = = = -w.o.Jittering

g Diff @ === -w.o. Jittering

85.9

85.7

85.7

855854

32 48 64 96
Range of Pixel §

0.3 0.5 1.0 2.0

Parameter

The orange dashed line denotes the MosRep without the jitter operation.
jittering operation achieves better transfer performance than ones without the
jittering operation, which demonstrates that this operation can increase the
variance of the mosaic view to prevent the model from memorizing the spatial

location of each small crop.
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