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INntroduction

* recent success of deep learning heavily relies on abundant
training data.

* the annotation of large-scale datasets often requires intensive
human labor.

* Inspires a popular pretraining-finetuning paradigm where models
are pretrained on a large amount of data In an unsupervised
manner and finetuned on a small labeled subset



INntroduction

* A possible explanation comes from the batch-selection strategy
of most current active learning methods. Starting from a random
Initial set, this strategy repeats the model training and data
selection processes multiple times until the annotation budget
runs out. Despite their success in from-scratch training, it does
not fit this pretraining-finetuning paradigm well due to the
typically low annotation budget, where too few samples in each
batch lead to harmful bias inside the selection process.



Motivation

* To fill In this gap In the pretraining-finetuning paradigm,we
formulate a new task called active finetuning, concentrating on
the sample selection for supervised finetuning. In this paper, a
novel method, ActiveFT, is proposed to deal with this task.
Starting from purely unlabeled data, ActiveFT fetches a proper
data subset for supervised finetuning in a negligible time. Without
any redundant heuristics, we directly bring close the distributions
between the selected subset and the entire unlabeled pool while
ensuring the diversity of the selected subset. This goal Is achieved
by continuous optimization in the high-dimensional feature space,
which i1s mapped with the pretrained model.
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selection strategy of a small subset from a large unlabeled data
pool for annotation, named as active finetuning task, which is 14 goal of active finetuning is to find the sampling
under-explored for a long time. strategy minimizing the expected model error

Sopi- = 817 m&“x,ygﬁ’xj} lerror(f(x;ws),y)] (1)



Methodology

The difference with traditional active learning :

* 1) We have access to the pretrained model f, which will be finetuned, before
data selection.

* 2)The selected samples are applied to the finetuning of the pretrained model
f Iinstead of from-scratch training.

* 3) The sampled subset size is relatively small, less than 10% in most cases.

* 4) We have no access to any labels such as a random initial labeled set
before data selection.



Methodology

Select Samples:

* 1) bringing close the distributions between the selected subset P
and the original pool »* ~ p..

* 2) maintaining the diversity of 7P
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Parametric Model Optimization:
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Assumption 1 Vi € [N, j € [B], if T is small, the follow-
ing far-more-than relationship holds that
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Figure 2. Parametric Model Optimization Process: By optimiz-
ing the loss in Eq. 11, each parameter 0 is appealed by nearby
sample features (orange in the figure, Eq. 9) and repelled by other

parameters 0%, k # j (green in the figure, Eq. 10).
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Figure 3. Similarity between Features and Parameters: On
CIFARI00 and ImageNet, we find the Top-20 most similar pa-
rameters Gg with each sample feature f;, and calc_ulate the av-
erage exponential similarity F;c ) |exp(sim(fi, 0¢)/7]. Here
s = {9:’;3 }jerm is randomly sampled following the distribution
ps,. The model f(-;wp) is DeiT-Small [42] pretrained on Ima-
geNet [37] with DINO framework [6]. The results verify Assump-
tion | that the Top-1 similarity is significantly larger than others.
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Implementation as a Learning Model

Algorithm 1: Pseudo-code for ActiveFT

Input: Unlabeled data pool {X; }i¢[v], pretrained
model f(-;wg), annotation budget B,
iteration number 7" for optimization

Output: Optimal selection strategy

S = {s; € [N}jerm
1 fori e [N]do
2 | fi = f(xiwo)

onstruct F* = {f;};cn) based on PY,

normalized to |||z =1 Wil

3 Uniformly random sample { 35-} € [N]}jers), and
initialize 6% = o

/+* Initialize the parameter s = {0g};¢im

based on JFY x

4 for iter € [T] do
5 Calculate the similarity between {fl;}z-e[N] and
A 3 T a
{Hiq}j.?[g]: Sim; ; = f; Ef‘i-;"r
6 MazSim; = Max;e(p] ST = 1S I,
/+ The Top-1 similarity between f; and
5.7 € [B] . =/
Calculate the similarity between #% and
O% k +# j for regulm*izilion:
RegSim;x = exp(0% 0%/7).k # j
8 Loss = —% Z:‘ €[V] MaxSim; +

& ZJE[B] log (Zk;ﬁj RegSimj,k)

/+ Calculate the loss function in Eg, 11

b |

9 5]5 — 6_5 — Iy - VQSLOSS
[+ Gptimize the parameter threough

gradisnt descent * |

10 f}% = ﬂ‘éﬂ[ﬁéﬂm,‘?‘ € [B]

/* HNormalize the parameters to ensure
k] = )
18512 =1

11 Find f, closest to 0%: s; = arg maxg.cn £y f for

each j € [B|

12 Return the selection strategy & = {s; }jE[B]




Methodology

CIFARTO0 Dataset ImageNet Dataset
= " — T tesowo ], ——
= 0000 | —e— gsampling ratio 1% — | e sampling ratio 1%
= | —=— sampling ratio 5% ko hil s —+— sampling ratio 5%
we 1000004 | we 1200009 |
£ \ E '
= | o= BO0DDDY |
& 0004 | & I
= | o soomnd |
X o007 | x
P o BOGDD
=TT =
E';. ‘g‘n SO0
£ 20000 i
s " —— o 20000 e
- B P -
- 0 -~ - P -
4 v & 10 12 14 1s 18 20 24 4 8 10 02 14 15 B 20
Top-20 Similar 6% to Each f; Top-20 Similar & to Each f;

Figure 3. Similarity between Features and Parameters: On
CIFARI100 and ImageNet, we find the Top-20 most similar pa-
rameters 6’% with each sample feature f;, and ca.lc_ulate the av-
erage exponential similarity F;c(ni[exp(sim(fi,65)/7]. Here
Os = {93 }je1m) is randomly sampled following the distribution
Py, The model f(-;wp) is DeiT-Small [42] pretrained on Ima-
geNet [37] with DINO framework [6]. The results verify Assump-
tion | that the Top-1 similarity is significantly larger than others.



Experiments

Table 1. Image Classification Results: Experiments are conducted on natural images with different sampling ratios. We report the mean
and std over three trials. Explanation of N/A results (“-”) is in our supplementary materials.

Method CIFAR10 CIFAR100 ImageNet
e 0.5% 1% 2% | 1% 2% 5% 0% | 1% 5%
Random 773426 822419 88.9+04 | 149419 243420 508434 69.3+0.7 | 45.1£0.8 64.3+0.3
FDS 64.5+1.5 732412 814407 | 81406 128403 169+1.4 523419 | 26.7+0.6 55.5+0.1

K-Means 83.0+43.5 859408 89.6+0.6 | 17.6+1.1 31.9+0.1 424+1.0 70.740.3 . .

CoreSet [33] . 81.6+0.3 884402 . 30.6+04 483405 62.9+0.6 . 61.70.2
VAAL [39] . 80.9+0.5 88.8+0.3 . 24.6+1.1 464408 70.1+0.4 . 64.0-£0.3
LearnLoss [45] . 81.6+0.6 86.7+0.4 - 192422 382428 65.7+1.1 . 63.2:0.4
TA-VAAL [21] - 82.6+0.4 88.7+0.2 - 347407 464+1.1 66.8+0.5 . 64.30.2
ALFA-Mix [33] : 83.4+0.3 89.6:0.2 - 35340.8 504409 69.9+0.6 - 64.5+0.2
ActiveFT (ours) | 85.0404 882404 90.1+0.2 | 26.142.6 40.7+0.9 54.6+23 71.0+0.5 | 50.1+03 65.3+0.1




Experiments

Table 2. Semantic Segmentation Results: experiments are con-
ducted on ADE20k with sampling ratios 5%, 10%. Results are
averaged over three trials.

Sel. Ratio | Random FDS K-Means ActiveFT (ours)

5% 14.54 6.74 13.62 15.3740.11
10% 20.27 12.65 19.12 21.60+0.40




Experiments

Table 3. Data Selection Efficiency: We compare the time cost to
select different percentages of samples from the CIFAR100 train-

ing set.

Sel. Ratio K-Means CoreSet VAAL Learnl.oss ours

2% 16.6s 1h57m 7h52m 20m 12.6s
5% 37.0s Th44m 12h13m 1h37m 21.9s
10% 70.2s 20h38m 36h24m Oh09m 37.3s




Experiments

(c) LearnLoss (d) ActiveFT (ours)

Figure 4. tSNE Embeddings of CIFAR10: We visualize the em-
bedding of selected samples using different algorithms. Different
colors denote categories, and the black dots are the 1% samples
selected by our method.
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Table 4. Generality on Pretraining Frameworks and Model
Architectures: We examine the performance of ActiveFT on dif-

ferent pretraining frameworks and models on CIFAR-10.

(a) Performance on DeiT-Small Pretrained with iBOT

Methods 0.5% 1% 2%
Random 81.7 83.0 89.8
CoreSet [35] - 82.8 89.2
LearnLoss [48] - 83.6 89.2
VAAL [39] . 85.1 89.3
ActiveFT (ours) 87.6t£0.8 88.3+0.2 90.9+0.2
(b) Performance on ResNet-50 Pretrained with DINO
Methods 0.5% 1% 2%
Random 64.8 76.2 83.7
CoreSet [35] - 70.4 83.2
LearnLoss [45] - T 81.3
VAAL [39] - 73.0 83.3

ActiveFT (ours) 68.5+04 78.6 0.7 84.9 +0.3




Experiments

Table 5. Ablation Study: We examine the effect of two modules
in our method. Experiments are conducted on CIFARI100 with
pretrained DeiT-Small model.

(a) ¢; Update Manner (b) Regularization Design

Ratio No-Update Update Ratio S1 S2  ours

2% 20.6 40.7 2%  33.1 268 40.7
5% 52.8 54.6 59 515 469 54.6




Experiments

Table 6. Effect of Temperatures: We try different temperatures
in our method. Experiments are conducted on CIFAR10 with pre-
trained DeiT-Small model.

Ratio 7=004 7=007 7=02 7=05

0.5% 85.6 85.0 84.1 83.5
1% 87.4 88.2 85.3 86.1
2% 90.3 90.1 89.6 89.0
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