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l Introduce

Multi-Domain Long-Tailed Recognition (MDLT): learning from multi-domain imbalanced data, with each domain
having its own imbalanced label distribution, and generalizing to a test set that is balanced over all domain-class pairs.
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® the label distribution for each domain is likely different from other domains

® multi-domain data inherently involves domain shift

® MDLT motivates zero-shot generalization within and across domains



l Domain-Class Transferability Graph

label space:  C=1{1,....C} ‘ domain-class pair : (d, c)
domain space: D = {1,...,D} the set of all domain-class pairs:
training set: S = {(x;,¢;, di) b1, M=DPRE= (@i dED.ce6

Definition 1 (Transferability). Given a learned model and a distance function d : R" x R - R
in the feature space, the transferability from domain-class pair (d,c) to (d',c) is:

trans((d, c), (d, ') £ Epez, [d (2, par ) |-
where g o 2 Eyez, 2] is the first order statistics (i.e., mean) of (d',c’).
Definition 2 (Transferability Graph). The transferability graph for a learned model is defined

as G = (V,E), where the vertices, V C {pq.}, represents the domain-class pairs, and the edges,
E CV xV, are assigned weights equal to trans ((d,c), (d', ).



l Domain-Class Transferability Graph

(a) Full Transferability Graph as a Distance Matrix
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(b) 2D Graph Visualization
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(c) Transferability Statistics
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T (v, 3,7) Statistics Example

Definition 3 ((«, 3,7) Transferability Statistics). The transferability graph can be summarized

by the following transferability statistics:

Different domains, same class:
Same domain, different classes:

Different domains, different classes:

a=E EdEdf?gd [traﬂs((d ¢ (df C))]
B = ByEEyz. [trans((d, c), (d, )] -
aoyli= EdEdr#E ]Eﬂraéc [tr&ﬂS((d C) (dfa c ))]




l Transferability Statistics

(a) Balanced & ldentical (b) Imbalanced & Identical (c) Imbalanced & Divergent =————>
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* When the per-domain label distributions are balanced and identical across domains, it does not prohibit the
model from learning discriminative features of high accuracy.

 If the label distributions are imbalanced but identical, ERM is still able to align similar classes in the two
domains.

* When the labels are both imbalanced and mismatched across domains, the learned features are no longer

transferable.
) (o,5,7)



Transferability Statistics

train 20 ERM models with varying hyperparameters

Uniform + Uniform

Forward-LT + Forward-LT

Backward-LT + Backward-LT

Forward-LT + Backward-LT
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(a) Balanced & Identical = (b) (c) Imbala (d) (e) Imbalanced & Divergent =

The (a, B, v) statistics can characterize a model’ s performance in MDLT

Data imbalance increases the risk of learning less transferable features



| BoDA

Domain-Class Distribution Alignment Loss: positive cross-domain pairs ()
__________________ /
-1 {exp (—d(zi, ;) |
faE =Y = Y logs kel
L D1 e S e} O (—A(zi: )

negative cross-class pairs (8,7)
Balanced Domain-Class Distribution Alignment (BoDA):

d(zt Hd e ) s d(z:,Ha )
'C Z 10 cal il = . d Z;, ] = —m—t
sanal B, 1)) = z..,ZE:z T ciEDZ\:{d-i} 2 (! ehye M\ {(d; e;)} OXP (—d(Zi ptgr 1)) (Zi; Bac) Naj e

i1C1

Theorem 1 (Lpopa as an Upper Bound). Given a multi-domain long-tailed dataset S with domain
label space D and class label space C satisfying |D| > 1 and |C| > 1, let Z be the representation set

of all training samples, and («, 3,7) be the transferability statistics for S defined in Definition 3.
It holds that

Lzoor(Z, {p}) > Nlog (|D| —1+[D|(|C| — 1) exp (ICRFM = % e ICI(\?\L— 1) T)) .

(3)



| BoDA

Domain 1 (MNIST-M)
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| BoDA

Algorithm 1 Balanced Domain-Class Distribution Aligniment (BoDA)
Input: Trainingset D = { (x;, e, d;)}r,, all domain-class pairs M = {(d, )}, encoder f, classifier

g, total training epochs E| calibration parameter v, loss weight ., momentum o ZBoDA d(Z, H'd,c) — \/(Z = ﬂ'd,c)T(Z = ﬂ*d,c)

for all (d,¢) e M do
Initialize the feature statistics { ,L.-,ﬂ Eg}}

end for 5 1

for e =0 to E do Lgopa-m d(za {ﬂ'd,m Ed,c}) = \/(Z - Hd,c).rzd,c(z - Nd,c)
repeat

Sample a mini-batch {{3;, ¢;, ) ey from D
for i =1 to m (in parallel) do

zi = f(x)

ti= glzi) BODAT
end for . . .
it s it Qi b G B (4) couple representation and classifier learning
Caleulate Lo using % -:il L(F,61)
Do one training step with loss Cep + wpam BODAT,C

until iterate over all training samples at current epoch e
/* Update feature statistics with momentum updating */
for all (d,c) € M do

Estimate current feature statistics {pgc, By}

pi.i;"“ —ax pfﬂ +{1—a) x pg,

D e B+ (1 —) x B
end for
end for

decouple representation from classifier learning




I Experiments
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Figure 6: Overview of training set label distribution for five MDLT datasets. We set up MDLT
benchmarks from datasets traditionally used for DG, and make validation/test sets balanced across
all domain-class pairs. More details are provided in Appendix D.



I Experiments

Table 2: Results on VLCS-MLT.

Accuracy (by domain)

Accuracy (by shot)

Table 3: Results on PACS-MLT.

Accuracy (by domain)

Accuracy (by shot)

Algorithm Average Worst Many Medium Few Zero

ERM [46] 76.3 +04  53.6 11 B4.6 £05 76.6 04 — 32,9 204
IRM [1] 76.5 £0.2 523 x07  85.3 £06 TH.5x10 — 335 %10
GroupDRO [40] 76.7 +0.4  54.1 +13 853 09 T76.2+10 — 34.5 420
Mixup [50)] 75.9 £0.1 52.7 £1.3 844 202 T71 06 — 20.2 414
MLDG [25] 76.9 +0.2  53.6 £0.5  84.9 £03 TT.5+10 — 344 109
CORAL [45] 75.9 £05 516 +07 843 06 THH 05 — 345 208
MMD |29 76.3 £0.6  53.4 03  B45 £08 TT.1x05 — 327 203
DANN [15] 775200 541 x03 859 +05 T6.0x04 — 38.0 23
CDANN |31] 76.6 £04  53.6 +04  B44 207 77308 — 35.0 £0.8
MTL [4] 76.3 +0.3  52.9 +05  B4.8 £09 T6.2+06 — 33.3 14
SagNet [35] 76.3 £0.2 523 £02  85.3 £03 T75.1x02 — 32.903
Fish [12] T7.5 403 543 +04 862405 T6.0 £04 — 35.6 £22
Focal [32] 75.6 £04 523 02  B4.0 402 755406 — 32.7 +09
CBLoss [10] 76.8 £03 525405  B4B8 407 TT5+14 — 33.2 416
LDAM |5] 775401 529 x02  86.5 £04 75505 — 352 206
BSoftmax [39] 76.7 +05  52.9 +09 844 +09 T82+06 — 34.3 +0.9
SSP [52] 76.1 £03 523 +£10 838403 T6.0+12 — 371207
CRT |23] 76.3 +0.2 51403 845 401 TT3x00 — 317 +10
BoDA, 76.9 £0.5 51.4 +03 85.3 £03 773 x£0.2 — 33.3 05
BoDA-M,. 77.5 +0.3 53.4 +03 85.8 +02 T7.3+02 — 35.7 0.7
BoDA, . 773 £0.2 53.4 0.3 85.3 £03 78.0+02 — 3B6 0.7
BoDA-M,. . 78.2 +0.4  55.4 +0.5 853 403 T79.3 06 — 43.3 +11
BoDA vs. ERM  +1.9 +1.8 +H0.7 +2.7 - +10.4

Algorithm Average Worst Many Medium  Few  Zero
ERM [46] 97.1 +01 95.8 02 97.1 0.0 97.0 0.0 98.0 0.9 —
IRM [1] 96.7 £0.2 952404  96.8 £0.2 96.7 £0.7 94.7 £14 —
GroupDRO [40] 97.0 +01  95.3 +04  97.3 +01 95.3 +12 947 436 —
Mixup [50] 96.7 £02  95.1+02  97.0 +0a0 96.7 03 91.3 +27 —
MLDG |25 96.6 £01  94.1+03  96.8 £01 963 207 92.7 05 —
CORAL [45] 96.6 0.5 943 0.7 96.6 +0.5 97.0 £0.8 947 +05 —
MMD [29] 96.9 £01  96.2+02 969 02 97.0 £0.0 96.7 05 —
DANN ([15] 96.5 £0.0 94301 965 201 98.0 200 94.7 224 —
CDANN |31] 96.1 £01  945+02  96.1 +0a1 963 05 94.0 09 —
MTL [4] 96.7 +0.2 94.5 0.6 96.8 £0.1 95.3 #£1.7 97.3 £1.1 =
SagNet [35] 97.2 +01  95.2+03  97.4 £01 96.7 £05 95.3 £05 —
Fish [42] 96.9 £02  95.2+02  97.0 £0a 97.0 05 947 +11 —
Focal [32] 96.5 £0.2 946 £07  96.6 £01 95.0 £1.7 96.7 £05 —
CBLoss [10] 96.9 +0.1 95.1 +04  96.8 0.2 97.0 £1.2 100.0 +0.0 —
LDAM [6] 96.5 £0.2 947 £02  96.6 201 95.7 £14 96.0 £0.0 —
BSoftmax [39] 96.9 £0.3  95.6 £0.3  96.6 +0.4 98.7 £0.7 99.3 0.5 —
SSP [52] 96.9 £0.2 954 +04  96.7 102 983 +05 98.0 +09 —
CRT [23] 96.3 £0.1 949201  96.3 z01 97.3 203 94.0 200 —
BoDA, 97.0 +£0.1 95.1 £04 97.0 £01 96.3 £0.5 98.0 £09 —
BoDA-M, 97.1 £0.1 04.9 £0.1 97.3 £0.1 96.3 05 96.0 £00 —
BoDA,c 97.2 0.1 95.7 £03  97.4 £01 97.0 £0.0 94.7 £1.1 -
BoDA-M, . 97.1 +0.2 96.3 +0.1 97.1 £0.0 97.0 0.8 96.0 £0.0 —
BoDA vs. ERM  +0.1 +0.5 +0.3 +0.0 -2.0 =




I Experiments

Table 4: Results on 0fficeHome-MLT.

Table 5: Results on TerraInc-MLT.

Accuracy (by domain)

Accuracy (by shot)

Accuracy (by domain)

Accuracy (by shot)

Algorithm Average Worst Many Medium Few Zero

ERM [46] 80.7 0.0 TL3 +0.1 87.8 £02 8L.0 0.2 63.1 £0.1 63.3 £7.2
IRM |[1] 80.6 +0.4 T0.7 +0.2 7.6 £04 81.5 £04 6L1 £09 56.7 £1.4
GroupDRO [40] 80.1 £0.3  68.7 0.9 88.1 £0.2 80.8 04 59.8 £1.2 51.7 £3.6
Mixup [50] 81.2 to.2 T2.3 +0.6 87.9 +04 B81.8 £0a 64.1 0.4 60.0 £41
MLDG [25] 80.4 +o.2 70.2 +0.6 87.1 £0.1 81.3 +0.3 613 £1.0 6L.7 £14
CORAL [45] 8L9+01 T2.7 +o6 879 +0a 83.0 01 63.5 0.7 65.0 +24
MMD [29] 784 04 67.7 08 852 o2 T9.4 207 588 04 56.7 £36
DANN [15] 79.2 t0.2 70.2 +0.9 86.2 £0.1 80.0 £0.1 60.3 £1.1 61.7 £5.9
CDANN [31] 79.0 0.2 694 +0.3 864 +06 T9.8 01 589 x08 50.0 +4.7
MTL [4] 79.5 +0.2  69.8 £0.6 873 x0.3 T9.8 02 6L1 0.2 5L.7 +2.7
SagNet [33] 80.9 +0.1 T0.5 +0.5 87.8 +04 81.9 01 6L.2 £0.9 56.7 £3.6
Fish [12] 81.3 +0.3 TL3 +0.7 88.2 +0.2 81.9 +0.3 63.2 0.8 61.7 +1.4
Focal [32] 77.9 0.0 67.6 +0.4 86.5 £0.3 T78.3 £01 574 £0.3 46.7 £3.6
CBLass [10] 79.8 £0.2 69.5 £0.7 86.6 £04 80.6 £0.2 611 £1.4 65.0 £2.4
LDAM [6] 80.3 0.2 69.9 x0.5  87.1 02 81.3 +0.3 61.1 =02 5L.7 +27
BSoftmax [39] 804 +02  70.9 +0.5 86.7 0.5 81.3 +03 624 £1.0 60.0 +41
SSP [52] 811403  TL140.3  87.3 £06 82.3 £03 61.6 0.7 63.3 £1.4
CRT [23] 8L2 400 725402  87.7 L0 8L.8 101 64.0 001 65.0 £2.4
BaDA,. 81.5 +0.1 718 +0.1 87.7 +t02 82.3 +01 64.2 +0.3 63.3 £1.4
BoDA-M,. 819 +02  TL6 0.2  87.3 03 83.4+02 62.3 203 65.0 x24
BoDA,. . 82.3 £0.1 T2.3 £0.3 87.1 £0.2 83.9 +0.3 63.2 £0.2 65.0 £24
BoDA-M,. . 82.4 +0.2 T72.3 +0.3 R7.7T +0.1 83.9 +0.6 64.2 +0.3 66.7T +2.7
BoDA vs. ERM  +1.7 +1.0 -0.1 +2.9 +1L.1 +3.4

Algorithm Average ‘Worst Many Medium Few Zero

ERM [46] 75.3 £03 674 +03  85.6 0.8 69.6 £3.2 66.1 +24 144 +2.8
IRM [1] 73.3 £0.7 643 £13  83.5 06 700 £1.8 58.3 £34 20.1 £14
GroupDRO [40] 72.0 £04  66.6 +0.2  84.7 +£1.1 64.6 +4.7 38.9 1.2 13.5 +11
Mixup [50] 711407 604 £11  83.2407 600 £06 56.1 £3.0 122 £21
MLDG [28] 76.6 +0.2 66.9 +0.5 86.1 +0.6 T3.8 £3.9 T0.6 £3.7 18.8 £24
CORAL [45] 76.4£05 678 09  86.3 £03 775 £31 66.1 £20 11.0 £14
MMD [29] 73.3 0.4 63.7 +1.1 84.0 £04 679 £27 60.6 £1.6 13.6 =26
DANN [15] 68.7 £09 611 £10  T79.6 £1.2 62.5 £81 48.9 +28 13.3 £1.1
CDANN |[31] 70.3 0.5 63.9 +1.0 83.5 £0.8 50.0 £4.2 439 £47 204 £31
MTL [1] 75.0 £0.7 67.7 £14 85207 738 +1.6 61.1 28 124 +40
SagNet [35] 75.1 £1.6 66.5 +2.1 85.5 £0.9 T7.1 £5.0 57.8 +43 13.0 £34
Fish [12] 75.3 £0.5 66.3 +0.5 85.8 £0.2 73.3 £3.0 61.1 £3.0 13.7 £33
Focal [32] T5.7 +04 653 £1.1  85.7 +0.3 T6.2 £39 68.9 +32 126 +19
CBLoss [10] 78.0 £04  68.3 £20 85001 89.2 12 83.9 +25 9.3 £3.9
LDAM [6] 4.7 09 64.1 +1.4 85.1 +0.6 T0.8 £3.5 67.8 £1.2 11.1 £24
BSoftmax [39]  76.7 £1.0 65.6 +1.3 83.4 08 90.8 £0.0 T8.3 £3.9 12.6 £24
SSP [52] 78.5+07 673 04  B5.5+L0 87.8 09 82.6 +1.2 13.2 +28
CRT [23] 81.6 +0.1 70.0 +0.4  89.7 £0.2 904 +0.3 83.9 £05 12.9 +0.0
BoDA,. 78.6 £0.4 68.5 +0.3 86.4 +0.1 85.0 +1.0 80.0 0.9 13.T £2.1
BoDA-M,. 79.4 +0.6 713 +04 884103 762 £o7 883 L16 144 L14
BoDA, . 82.3 0.3 68.5 +0.6 89.2 +0.2 92.5 09 88.3 £1.2 21.3 +07
BoDA-M, . 83.0 +04 74.6 0.7 89.2 402 91.2 +0.6 91.7 £2.0 21.7 £1.4
BoDA vs. ERM  +7.7 +7.2 +3.6 +22.9 +25.6 +7.3




I Experiments

Table 6: Results on DomainNet-MLT.

Accuracy (by domain)

Accuracy (by shot)

Table 7: Results over all MDLT benchmarks.

Algorithm VLCS-MLT PACS-MLT OfficeHome-MLT Terralnc-MLT Domainﬂet—MLT|A\-’g

Algorithm Average ‘Worst Many Medium Few Zero

ERM |46] 58.6 £0.2 204 +0.3 66.0 £01 56.1 +01 35.9 +0.5 27.6 +03
IRM [1] 57.1 £0.1 27.6 0.1 64.7 £01 54.3 203 33.5 203 25.8 203
GroupDRO [10] 53.6 0.1 25.9 £0.2 61.8 £01 49.1 203 30.7 £0.7 22.0 0.1
Mixup [50] 57.6 0.1 28.7 +0.0 64.9 £02 54.5 01 35.6 +02 27.3 +03
MLDG [258] 58.5 +0.0 28.7 01 66.0 +0.1 1 35.3 202 26.9 +03
CORAL [45] 59.4 0.1 30.1 0.4 66.4 £0.1 57.1 z00 37.7 06 29.9 +o02
MMD [29] 56.7 £0.0 272 202 64.2 +01 54.0 200 33.9 202 254 +02
DANN [15] 55.8 0.1 26.9 +0.4 63.0 £0.1 52.7 x01 34.2 +04 26.8 +04
CDANN [31] 56.0 +0.1 27.7 201 63.2 00 52.7 +02 34.3 205 27.6 01
MTL [4] 58.6 +0.1 203 x0.2 659 201 56.0 04 35.4 201 28.2 £03
SagNet [35] 58.9 £0.0 294 02 66.3 01 56.4 00 36.2 03 27.2 +04
Fish [12] 59.6 0.1 20.1 01 67.1 01 57.2 £01 36.8 04 27.8 £03
Focal [32] 57.8 0.2 275 £0.1 65.2 0.2 55.1 +0.2 35.8 201 26.3 £01
CBLaoss |10] 58.9 01 30.1 201 64.3 £00 61.0 203 42.5 £04 28.1 +02
LDAM [6] 59.2 +0.0 292 +0.2 66.6 00 57.0 200 37.1 £02 27.8 +03
BSoftmax [39] 58.9 0.1 29.9 +0.1 64.3 01 60.9 £03 42.4 206 28.2 201
SSP [52] 59.7 £0.0 316 +0.2 64.3 £01 62.6 x01 45.0 0.3 30.5 +00
CRT |23] 60.4 +0.2 316 01 66.8 +00 61.6 £01 45.7 201 29.7 0.1
BoDA, 60.1 0.2 32,6 £01 65.7 £02 60.6 £0.1 42.6 203 30.5 o2
BoDA-M, 60.1 +0.2 322 202 65.9 02 60.7 +0.1 42.9 x03 30.0 £o.1
BoDA, . 61.7 0.1  33.4 x01  67.0 0.1 62.7 01 46.0 202 32.2 103
BoDA-M, .. 61.7 0.2 33.3 0.1 67.0 0.1 63.0 0.3 46.6 +0.4 31.8 02
BoDA vs. ERM  +3.1 +4.0 +1.0 +6.9 +10.7 +4.6

ERM [16] 76.3 £04 97.1 +0.1 80.7 £0.0 75.3 £0.3 58.6 +0.2 77.6
IRM [1] 76.5 0.2 96.7 +0.2 80.6 £0.4 73.3 £0.7 57.1 0.1 76.8
GroupDRO [10] 76.7 +0.4 97.0 +0.1 80.1 +0.3 72.0 £0.4 53.6 £0.1 75.9
Mixup [50] 75.9 £0.1  96.7 +0.2 81.2 +0.2 71.1 +0.7 57.6 +0.1 76.5
MLDG [25] 76.9 0.2 96.6 +0.1 80.4 £0.2 76.6 +0.2 58.5 +0.0 77.8
CORAL [45] 75.9 0.5 96.6 +0.5 81.9 +0.1 76.4 £0.5 59.4 +0.1 78.0
MMD |[29] 76.3 £0.6 96.9 +0.1 78.4 £04 73.3 £0.4 56.7 +0.0 76.3
DANN [15] 77.5 0.1 96.5 £0.0 79.2 0.2 68.7 +0.9 55.8 0.1 75.5
CDANN [31] 76.6 +0.4 96.1 +0.1 79.0 +0.2 70.3 +0.5 56.0 +0.1 75.6
MTL [4] 76.3 0.3 96.7 +0.2 79.5 0.2 75.0 £0.7 58.6 +0.1 77.2
SagNet |35] 76.3 0.2 97.2 +0.1 80.9 0.1 75.1 £1.6 58.9 0.0 T7.7
Fish [42] 77.5 £0.3 96.9 +0.2 81.3 +03 75.3 £0.5 59.6 +0.1 78.1
Focal [32 75.6 £04 96.5 +0.2 77.9 £0.0 75.7 £0.4 57.8 0.2 76.7
CBLoss [10] 76.8 £0.3 96.9 +0.1 79.8 £0.2 78.0 £0.4 58.9 +0.1 T8.1
LDAM (6] T7.5 £0.1 96.5 £0.2 80.3 t0.2 T4.7 £0.9 59.2 0.0 T7.7
BSoftmax [39]  76.7 £0.5 96.9 +£0.3 80.4 £0.2 T6.7 £1.0 58.9 +0.1 77.9
SSP [52] 76.1 £0.3 96.9 +0.2 81.1 +0.3 78.5 £0.7 59.7 0.0 78.5
CRT [23] 76.3 £0.2 96.3 £0.1 81.2 00 81.6 +0.1 60.4 +0.2 79.2
BoDA, 76.9 0.5 97.0 o1 81.5 +0.1 T8.6 £0.4 60.1 +0.2 8.8
BoDA-M,. 77.5 £0.3 97.1 x0.1 81.9 02 794 L06 60.1 £0.2 79.2
BoDA,. . 773 +o02 97.2 +o01 82.3 041 82.3 +0.3 61.7 +0.1 80.2
BoDA-M,. . 78.2 104 97.1 Lo.2 82.4 L02 83.0 t0.4 61.7 0.2 80.5
BoDA vs. ERM  +1.9 +0.1 +1.7 +7.7 +3.1 |+2.9
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Figure 7: The absolute accuracy improvements of BoDA vs. ERM over all domain-class pairs on
Of ficeHome-MLT. BoDA establishes large improvements w.r.t. all regions, especially for the few-shot
and zero-shot ones. Results for other datasets are in Appendix H.2.
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Table 24: Ablation study on effect of adding balanced distance in BoDA.

VLCS-MLT PACS-MLT O0OfficeHome-MLT Terralnc-MLT DomainNet-MLT | Avg

DA 76.6 0.4 96.8 0.2 80.7 +03 76.4 +0.5 589 +0.2 77.9
BoDA 77.3 02 97.2 +0.1 82.3 +0.1 82.3 +0.3 61.7 +0.1 80.2
Gains +0.7 +0.4 +1.6 +5.9 +2.8 | +2.3

¢
Table 25: Ablation study on effect of distance calibration coefficient )‘j.j in BoDA. We vary the
value of v and report the averaged results over all five MDLT datasets.

v 0 0.5 07 09 1 11 12 15 | ERM
BoDA 78.9 80.1 80.0 802 801 798 796 79.2 | 77.6
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Figure 8: BoDA analysis. (a) Label distribution setup. (b) Distance of feature mean between train
and test data. BoDA enables better learned tail (d,¢) with smaller feature discrepancy. (c) BoDA
learns features that are more aligned across domains even in the presence of divergent labels, and

significantly improves upon ERM by 9.5%.
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Table 9: BoDA strengthens performance on Domain Generalization (DG) benchmarks. Full tables
including detailed results for each DG dataset are provided in Appendix G.

Algorithm VLCS PACS 0fficeHome Terralnc DomainNet | Avg
ERM 77.5 04 85.5 +0.2 66.5 £0.3 46.1 £1.8 40.9 x0.1 63.3
Current SOTA |45 78.8 +0.6 86.2 +0.3 68.7 £0.3 A7.6 £1.0 41.5 +0.1 64.5
BoDA, ., 78.5 +03  86.9 +04 69.3 +0.1 50.2 £0.4 42.7 0.1 65.5
BoDA, . + Current SOTA |45| 79.1 0.1 87.9 +0.5 69.9 +0.2 50.7 +0.6 43.5 +0.3 | 66.2
BoDA vs. ERM +1.6 +2.4 +3.4 +4.6 +2.6 | +2.9
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