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Energy Score

The essence of the energy-based model (EBM) is to build a function E(x): RP — R that
maps each point x of an input space to a single, non-probabilistic scalar called the
energy. A collection of energy values could be turned into a probability density p(x)
through the Gibbs distribution:

—Exy)/T  —B(xy)/T
p(y | x) _f o—E(xy)/T ~ o—Ex)/T

The Helmholtz free energy E(x) of a given data point x € R? can be expressed as the
negative of the log partition function:

E(x)=-T - log/ e~ E(y)/T
y.f
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The energy-based model has an inherent connection with modern machine learning,
especially discriminative models. To see this, we consider a discriminative neural
classifier f(x): R? - RX, which maps an input x € R? to K real-valued numbers known
as logits. These logits are used to derive a categorical distribution using the softmax

function:
pfy(x)fT

=

S5 efi(x)/T

p(y | x) =

we can define an energy for a given input (x,y) as E(x,y) = —f,(x). More importantly,
without changing the parameterization of the neural network f(x), we can express the
free energy function E(x; f) over x € RP in terms of the denominator of the softmax
activation:

K
E(x;f) =T -log ) _efitIT
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Class-Imbalanced Semi-Supervised

Iﬁi?{émng' refine the pseudo-labels through convex optimization targeted specifically for the

(2020) imbalanced scenario.

CReST achieve class-rebalancing by pseudo-labeling unlabeled samples with frequency that is
(2021) inversely proportional to the class frequency.

ABC (2021) introduce an auxiliary classifier that is trained with class-balanced sampling

Adsh (2022) extend the idea of adaptive thresholding to the long-tailed scenario.

DASO (2022) use a similarity-based classifier to complement pseudo-labeling.
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Out-of-Distribution Detection

DS3L (2020) optimizes a meta network to selectively use unlabeled data;

OpenMatch (2021) trains an outlier detector with soft consistency regularization.
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Current research status

State-of-the-art imbalanced SSL methods are build upon the pseudo-labeling and
consistency regularization frameworks by augmenting them with additional modules that
tackle specific imbalanced issues. Critically, these methods still rely on confidence-
based thresholding for pseudo-labeling, in which only the unlabeled samples whose
predicted class confidence surpasses a very high threshold (e.g., 0.95) are pseudo-
labeled for training.

Faces two major drawbacks

1. applying a high confidence 2. prior studies show that softmax-
threshold yields significantly lower based confidence scores in deep
recall of pseudo-labels for minority networks can be arbitrarily high on
classes, resulting in an exacerbation of even out-of-distribution samples.

class imbalance. Lowering the
threshold can improve the recall for tail
classes but at the cost of reduced
precision for other classes.
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Example

Deep Neural Networks are Easily Fooled: High Confidence Predictions for Unrecognizable Images
CVPR 2015

State-of-the-art DNNs can recognize 2 But DNNs are also easily fooled: images can be produced that are unrecognizable
real images with high confidence to humans, but DNNs believe with 99.99% certainty are natural objects
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Energy Score vs. Softmax Score

e_E(mvf)/T
p(z) = [ e BT

contant for all x

logp(z) = —E(z, f)/T — logZ

The energy score and the negative logarithmic likelihood of the data points are linearly
aligned, while low energy means high likelihood, which means it is more likely to be 1D
data, and vice versa, it is more likely to be OOD data.
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Energy Score vs. Softmax Score

ef™ (x) 1
For an ID data, its negative max x) = = —
logarithmic likelihood expectation is y e > el 3 efilE) =)
smaller. However, the higher the
confidence level of this classification,
the better, and the two conflict.

logmax p(y|z) = E(z, f(z) — f*(z)) = E(z, f) + f™(2)

log mgxp(y\m) = —logp(z) + f"*(x) — log Z

l T

K
E(x;f)=-T-log ) _ef:/T
contant for all z

logp(z) = —E(x, f)/T — fog2
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The training of pseudo-labeling SSL methods for image classification involves two loss
terms: the supervised loss £, computed on human-labeled data and the unsupervised
loss £,, computed on unlabeled data.

The final loss at each training iteration is computed by £ = £, + AL, with 1 as a

hyperparameter to balance the loss terms. The model parameters are updated with this
loss after each iteration.

L= 2 Hiywplyle(x))

g b=1
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Figure 2: Overview of Confidence-based Pseudo-Labeling vs. Inlier Pseudo-Labeling.
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Figure 1: We illustrate the idea of InPL with a toy example with one head class (green) and one tail
class (red). (a) At the beginning of training, only a few unlabeled samples are close enough to the
training distribution formed by the initial labeled data. Note that with a confidence-based approach,
the diamond unlabeled sample would be added as a pseudo-label for the green class since the model’s
confidence for it is very high (0.97). Our InPL instead ignores it since its energy score is too high and
is thus considered out-of-distribution at this stage. (b) As training progresses, the training distribution
is evolved by both the initial labeled data and the pseudo-labeled “in-distribution” unlabeled data,
and more unlabeled data can be included in training. In this example, with our approach InPL, the
diamond sample would eventually be pseudo-labeled as the red class.



I Method

Confidence vs Enerqgy
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Figure 3: Visualization: confidence vs energy score: The shaded region shows the unlabeled
samples that are pseudo-labeled. Inlier Pseudo-Labeling can produce correct pseudo-labels for many
low-confident unlabeled samples, increasing recall while filtering out many false positives.
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ENERGY-BASED PSEUDO-LABELING VS.
CONFIDENCE-BASED PSEUDO LABELING

CIFARI10-LT CIFAR100-LT
v = a0 v =100 ~ =200 v =350 ~ =100
UDA (Xie et al., 2020a) 80.21+049 72.19+151 63.32+167 46.79+076 41.47+097
FixMatch (Sohn et al., 2020) 80.84+020 72.95+132 63.25+013 46.99+037 41.49+038
FixMatch-UPS (Rizve et al., 2021) 81.754+056 73.17+163 64.38L0.56 - -
FixMatch-InPL w/o AML (ours) 83.36+038 76.05+084 66.47+106 48.03+031 42.53+068
FixMatch-Debias + AML (Wang ¢t al,, 2022)  83.53+067 76.92+172 67.70+044 50.2d4+046 44.12+031
FixMatch-InPL(ours) 83.92+052 77.44+117 68.47+1.15 49.96+036 44.33+061
OpenMatch (Saito et al., 2021) 81.01+045 73.15+1.03 63.22+186 46.92+028 40.76+031
FixMatch-D3SL (Guo et al., 2020) 81.20+033 72. 714232 65.09+172 46.83+045 41.22+4039

Table 1: Top-1 accuracy of FixMatch variants on CIFAR 10-LT/100-LT. For CIFAR10-LT and
CIFAR100-LT, we use 10% and 30% data as labeled sets, respectively. We use Wide ResNet-28-
2 (Zagoruyko & Komodakis, 2016) for CIFAR 10-LT and WRN-28-8 for CIFAR 100-LT. All methods
are trained with the default FixMatch training schedule (Sohn et al., 2020). Results are reported with
the mean and standard deviation over 3 different runs.
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These results show the
efficacy of InPL over standard
confidence-based pseudo-
labeling for imbalanced SSL.
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COMPARISON TO STATE-OF-THE-ART IMBALANCED SSL APPROACHES

I Experiment

Dataset

CIFARI0-LT

CIFAR100-LT

Imbalance Ratio

v = 100

v = 200

V= 20

FixMatch (5

w/ DARP+cRT (Kim et al

72.34+033/ 53.8+063

68.5+060/ 45.84+1.15

66.34+049 / 42 4+0.04

51.04020/ 32.8+0.41

ABC-InPL consistently

78.1+089/ 66.6+1.55 T73.2+085/57.1+1.13 = 54.7+046 / 41.2+0.42 .
w/ CReST+ (Wei et al., 20 76.6+046/ 61.4+085 T70.0+082/49.4+1.52 - 51.64+029/ 36.4+0.46 outperforms the confldence-
w/ ABC (Lee et al., 2021 81.1+082/72.0+1717  T7.1+046/ 64441092 73.9+118/58. 14272 56.3+019/ 43 44042 based Counterparts on
w/ ABC-InPL (ours) 82.9+060/76.4+149 7974071 /70.8+143 T6.4+100/63.7+203 57.7+033/ 46.4+026
e & e _ CIFAR10-LT and CIFAR100-
RemixMatch (I 73.7+039/559+087 699+023/48.4+060 68.2+037/454+070 54.0+029/ 37.1+037

w/ DARP+cRT (K

1 el 78.5+061/ 66.4+169  73.9+050/ 57.441.45 . 55.14045/ 43.6+0.58 LT under the ABC framework.
w/ CReST+ (Wei et al., 2021 75.7+034/59.6+076 T1.3+077/ 50.8+1.56 = 54.6+048/ 38.1+0.60
w/ ABC (Lee et al_, 20 82.4+045/757+1.18 80.6+066/ 72.1+1.51 78.84+027/699+0099  57.6+026/ 46.7+0.50
w/ ABC-InPL(ours) 83.6+045/81.7+007 81.3+083/ 76.8+088 T78.8+075/74.5+147 58.4+025/ 48.9+0.36
CIFAR10-LT CIFAR100-LT
v =100 v =150 v =10 v =20
N1 =500 Ny =1500 N;i=500 Ny =1500 Ny =50 Ny =150 N;i=50 N; =150 These results demonstrate

M; =4000 M; =3000 M;=4000 M;=3000 M, =400 M, =300 M; =400 M; =300

that InPL achieves strong

FixMatcht (Sohn et al., 2020) 68.5+0.94 71.5+031 62.9+036 72.4+103 - - - -

w/ Adshf (Cui et al., 2019) 76.3+0.86 78.1+042 67.5+045 7374034 = z = B performance on imbalanced
FixMatch (Sohn et al., 2020) 67.8+1.13 T7.5+1.32 62.9+036 72.4+1.03 452+055  56.5+006  40.0+096  50.7+0.25 .

w/ DARP (Kin .5 2020 T4.5+0.78 T7.8+0.63 67.2+032 73.6+0.73 4941020  58.1+044  43.4+087  52.2+066 data across dlﬁ:erent

w/ CREST+ (Wei et al., 2021) 76.3+0.86 78.1+042 67.5+045 73.7+034 44.5+094  57.4+0a8 40.1+128  50.1+021 H

w/ DASO (Oh et al., 2022) 76.0+0.37 79.1+0.75 70.1+1.81 75.1+0.77 49.8+024  592+035  43.6+009  52.9+042 frameworks and evaluatlon
w/ ABC (Lee et al, 2021) 78.9+0.82 83.8+036 66.5+0.78 80.1+045 475+018 59.1+021 41.6+083  53.7+055 Sett|ngs_

w/ ABC-DASO (Oh et al, 2022)  80.1+1.16 83.4+031 70.6+0.80 80.4+056 5024062  60.0+032  44.5+025  55.3+0s3

w/ ABC-InPL (Ours) 81.4+0.76 84.4-:0.20 77.5+157 80.9+0.82 51.8+100 61.0+032 44.6+124 55.1+051
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RESULTS ON IMAGENET

ImageNet-127 (Imbalanced) ImageNet (Balanced)
FixMatch 51.96 56.34
FixMatch-InPL (ours) 54.82 57.92

Table 4: Results on ImageNet-127 and ImageNet. We
use sample 10% data as the labeled set for ImageNet-
127 and use 100 labels per class for ImageNet. Our
approach outperforms the confidence-based counterpart
in FixMatch on both datasets.

InPL outperforms the vanilla FixMatch with confidence-based pseudo-labeling
by a large margin, which further demonstrates the efficacy of our approach on
large-scaled datasets.

This shows that the energy-based pseudo-labeling also has potential to become
a general solution to SSL problems.
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PSEUDOLABEL PRECISION AND RECALL ANALYSIS
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Figure 4: Precision- Recall Analysis We compare pseudo-label precision and recall between InPL

and FixMatch. Orange and green curves denote FixMatch with threshold 0.95 and 0.6 respectlvely.

InPL is shown in blue whlch achleves improved recall for tail classes and better overall precision.
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Figure B: Precision-Recall Analysis on Head and Body Classes: Orange and green curves denote
FixMatch with threshold 0.95 and 0.6 respectively. InPL is denoted by blue curves. InPL consistently
achieves higher pseudo-label precision with slightly lower recall compared with the confidence-based

pseudo-labeling baselines.
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Compared with FixMatch, InPL
achieves higher precision for
overall, head, and body
pseudo-labels. Importantly, it
doubles FixMatch'’s recall of tail
pseudo-labels without hurting
the precision much. This
shows that InPL predicts more
true positives for the talil
classes and also becomes less
biased to the head classes.
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