

Offline RL with No OOD Actions: In-Sample Learning via Implicit Value Regularization

Haoran Xu^{1*} Li Jiang² Jianxiong Li¹ Zhuoran Yang³ Zhaoran Wang⁴ Victor Wai Kin Chan² Xianyuan Zhan¹⁵ ¹Institute for AI Industry Research (AIR), Tsinghua University ²Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua University ³Yale University ⁴Northwestern University ⁵Shanghai Artificial Intelligence Laboratory {ryanxhr, jiangli3859, zhanxianyuan}@gmail.com

ICLR2023

 $MDP = (S, A, R, \gamma, P, \rho_0)$ $Objective: J(\pi) = \mathbb{E}_{s_0 \sim \rho_0, a \sim \pi(\cdot|s), s' \sim P(\cdot|s, a)} [\sum_{t=0}^{T} \gamma^t r(s_t, a_t)]$ $Policy: \max J(\pi) \rightarrow \pi(a|s) \longrightarrow \text{ actor}$ $State \text{ value function: } V(s) = \mathbb{E}_{s_t, a_t \sim \rho_\pi} [\sum_{t=0}^{T} \gamma^t r(s_t, a_t) | s_0 = s]$ $State \text{ -action value function: } Q(s, a) = \mathbb{E}_{s_t, a_t \sim \rho_\pi} [\sum_{t=0}^{T} \gamma^t r(s_t, a_t) | s_0 = s, a_0 = a] \quad form the equation of the equation$

 \lfloor policy improvement: use Q and V to update π

Off policy evaluation(OPE)

Bellman operator $\mathcal{T}^{\pi}Q(s,a) \approx \mathbb{E}_{s'\sim \mathcal{B}}[r + \gamma Q(s',\pi(s'))]$

Because of offline setting, overestimate due to extrapolation error cannot be corrected

The main idea of offline RL: Constraint the learned policy is close to the behavior policy

Policy constraint IQL, TD3+BC
$$\begin{aligned} \pi_{k+1} &= \underset{\pi \in \Pi}{\operatorname{arg max}} \ \mathbb{E}_{\mathbf{a} \sim \pi(\cdot | \mathbf{s})}[A^{\pi_k}(\mathbf{s}, \mathbf{a})] \\ \text{s.t.} \ D_{\mathrm{KL}}(\pi(\cdot | \mathbf{s}) || \pi_{\beta}(\cdot | \mathbf{s})) \leq \epsilon \end{aligned}$$

Value Regularization CQL
$$\underset{Q}{\operatorname{arg\,min}} \alpha \cdot \left(\mathbb{E}_{\mathbf{s} \sim \mathcal{D}, \mathbf{a} \sim \mu(\mathbf{a}|\mathbf{s})} [Q(\mathbf{s}, \mathbf{a})] - \mathbb{E}_{\mathbf{s} \sim \mathcal{D}, \mathbf{a} \sim \hat{\pi}_{\beta}(\mathbf{a}|\mathbf{s})} [Q(\mathbf{s}, \mathbf{a})]\right) + \frac{1}{2} \mathbb{E}_{\mathbf{s}, \mathbf{a}, \mathbf{s}' \sim \mathcal{D}} \left[\left(Q(\mathbf{s}, \mathbf{a}) - \hat{\mathcal{B}}^{\pi} \hat{Q}^{k}(\mathbf{s}, \mathbf{a}) \right)^{2} \right]$$

Supervised Learning Decision transformer, RvS
Others Model based Combo

Model free RL in offline setting: Pessimistic estimate

In-sample Learning

only use in-sample actions of offline dataset to evaluate policy

$$\begin{aligned} \mathsf{IQL} & \min_{V} \ \mathbb{E}_{(s,a)\sim\mathcal{D}} \big[\big| \tau - \mathbb{1} \big(Q(s,a) - V(s) < 0 \big) \big| \big(Q(s,a) - V(s) \big)^2 \big] \\ & \min_{Q} \ \mathbb{E}_{(s,a,s')\sim\mathcal{D}} \big[\big(r(s,a) + \gamma V(s') - Q(s,a) \big)^2 \big], \end{aligned}$$

Extreme
Q-learning
$$\mathcal{J}(V) = \mathbb{E}_{\mathbf{s}, \mathbf{a} \sim \mu} \left[e^{(\hat{Q}^k(\mathbf{s}, \mathbf{a}) - V(\mathbf{s}))/\beta} \right] - \mathbb{E}_{\mathbf{s}, \mathbf{a} \sim \mu} [(\hat{Q}^k(\mathbf{s}, \mathbf{a}) - V(\mathbf{s}))/\beta] - 1$$
$$\mathcal{L}(\phi) = \mathbb{E}_{(\mathbf{s}, \mathbf{a}, \mathbf{s}') \sim \mathcal{D}} \left[(Q_{\phi}(\mathbf{s}, \mathbf{a}) - r(\mathbf{s}, \mathbf{a}) - \gamma V_{\theta}(\mathbf{s}'))^2 \right]$$

Some other methods need to estimate behavior policy $\mu(a|s)$

In-sample learning avoids extrapolation error to get accurate *Q* and *V* on state-action pairs in offline dataset, meanwhile, in-sample learning can decouple policy improvement and policy evaluation.

Behavior-regularized MDP problem

$$\max_{\pi} \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^t \left(r(s_t, a_t) - \alpha \cdot f\left(\frac{\pi(a_t|s_t)}{\mu(a_t|s_t)}\right) \right) \right]$$

policy evaluation operator $(\mathcal{T}_{f}^{\pi})Q(s,a) := r(s,a) + \gamma \mathbb{E}_{s'|s,a} [V(s')]$

$$V(s) = \mathbb{E}_{a \sim \pi} \left[Q(s, a) - \alpha f\left(\frac{\pi(a|s)}{\mu(a|s)}\right) \right].$$

Assumption 1. Assume $\pi(a|s) > 0 \Rightarrow \mu(a|s) > 0$ so that π/μ is well-defined. Assumption 2. Assume the function f(x) satisfies the following conditions on $(0, \infty) : (1) f(1) = 0$; (2) $h_f(x) = xf(x)$ is strictly convex; (3) f(x) is differentiable. $h'_f(x) = f(x) + xf'(x), g_f(x) = (h'_f)^{-1}(x)$

Derivation

$$egin{aligned} J(\pi) &= \max_{\pi} \mathbb{E} iggl[\sum_{t=0}^{\infty} \gamma^t r(s_t, a_t) - lpha \cdot figgl(rac{\pi(a_t|s_t)}{\mu(a_t|s_t)} iggr) iggr] &= \max V(s) = \max \mathbb{E}_{a \sim \pi} iggl[Q(s, a) - lpha figgl(rac{\pi(a|s)}{\mu(a|s)} iggr) iggr] \ \pi(a|s) &\geq 0 \,, \ \sum_a \pi(a|s) &= 1 \ \end{aligned}$$

The Lagrangian function:
$$L(\pi, \beta, u) = \sum_{s} d^{\pi}(s) \sum_{a} \pi(a|s) \left(Q(s, a) - \alpha f\left(\frac{\pi(a|s)}{\mu(a|s)}\right) \right)$$
$$-\sum_{s} d^{\pi}(s) \left[u(s) \left(\sum_{a} \pi(a|s) - 1 \right) - \sum_{a} \beta(a|s) \pi(a|s) \right]$$

$$\begin{array}{ll} \text{KKT conditions:} & 0 \leq \pi(a|s) \leq 1 \text{ and } \sum_{a} \pi(a|s) = 1 \\ & 0 \leq \beta(a|s) \\ & \beta(a|s)\pi(a|s) = 0 \\ & Q(s,a) - \alpha h'_f \left(\frac{\pi(a|s)}{\mu(a|s)}\right) - u(s) + \beta(a|s) = 0 \end{array}$$

$$Q(s,a) - \alpha h'_f \left(\frac{\pi(a|s)}{\mu(a|s)}\right) - u(s) + \beta(a|s) = 0 \implies \pi(a|s) = \mu(a|s) \cdot g_f \left(\frac{1}{\alpha} \left(Q(s,a) - u(s) + \beta(a|s)\right)\right)$$

complementary slackness $\beta(a|s)\pi(a|s) = 0 \implies \pi(a|s) = \mu(a|s) \cdot \max\left\{g_f \left(\frac{1}{\alpha} \left(Q(s,a) - u(s)\right)\right), 0\right\}$
normalization condition $\implies \mathbb{E}_{a \sim \mu}\left[\max\left\{g_f \left(\frac{1}{\alpha} \left(Q(s,a) - u(s)\right)\right), 0\right\}\right] = 1$
optimal value function $\implies V^*(s) = \mathcal{T}_f^* V^*(s)$

$$V^*(s) = \mathcal{T}_f^* V^*(s)$$

$$= \sum_a \pi^*(a|s) \left(Q^*(s,a) - \alpha f\left(\frac{\pi^*(a|s)}{\mu(a|s)}\right) \right)$$

$$= \sum_a \pi^*(a|s) \left(u^*(s) + \alpha \frac{\pi^*(a|s)}{\mu(a|s)} f'\left(\frac{\pi^*(a|s)}{\mu(a|s)}\right) \right)$$

$$= u^*(s) + \alpha \sum_a \frac{\pi^*(a|s)^2}{\mu(a|s)} f'\left(\frac{\pi^*(a|s)}{\mu(a|s)}\right)$$

$$= u^*(s) + \alpha \mathbb{E}_{a \sim \mu} \left[\left(\frac{\pi^*(a|s)}{\mu(a|s)}\right)^2 f'\left(\frac{\pi^*(a|s)}{\mu(a|s)}\right) \right]$$

optimality conditions of the behavior regularized MDP

$$Q^{*}(s,a) = r(s,a) + \gamma \mathbb{E}_{s'|s,a} \left[V^{*}(s') \right]$$
$$\pi^{*}(a|s) = \mu(a|s) \cdot \max \left\{ g_{f} \left(\frac{Q^{*}(s,a) - u^{*}(s)}{\alpha} \right), 0 \right\}$$
$$V^{*}(s) = u^{*}(s) + \alpha \mathbb{E}_{a \sim \mu} \left[\left(\frac{\pi^{*}(a|s)}{\mu(a|s)} \right)^{2} f' \left(\frac{\pi^{*}(a|s)}{\mu(a|s)} \right) \right]$$
$$\mathbb{E}_{a \sim \mu} \left[\max \left\{ g_{f} \left(\frac{1}{\alpha} \left(Q^{*}(s,a) - u^{*}(s) \right) \right), 0 \right\} \right] = 1$$

zero-forcing support constraint $\mu(a|s) = 0 \Rightarrow \pi(a|s) = 0$

$$\begin{array}{ll} \alpha \text{-divergence:} & D_{\alpha}(\mu,\pi) = \frac{1}{\alpha(\alpha-1)} \mathbb{E}_{\pi} \Big[\Big(\frac{\pi}{\mu} \Big)^{-\alpha} - 1 \Big] \end{array} \Big] \begin{array}{l} \alpha = -1 \quad \chi^2 - \text{divergence} \\ & \alpha = -1 \quad \chi^2 - \text{divergence} \\$$

ParN_eC 模式识别与神经计算研究组 PAttern Recognition and NEural Computing

Method

Sparse Q-learning(SQL) $\alpha = -1$, f(x) = x - 1 $g_f(x) = \frac{1}{2}x + \frac{1}{2}$

$$\begin{aligned} Q^{*}(s,a) &= r(s,a) + \gamma \mathbb{E}_{s'|s,a} \left[V^{*}(s') \right] & \mathbb{E}_{a \sim \mu} \left[\max\left\{ \frac{1}{2} + \frac{Q^{*}(s,a) - U^{*}(s)}{2\alpha}, 0 \right\} \right] = 1 \\ \pi^{*}(a|s) &= \mu(a|s) \cdot \max\left\{ \frac{1}{2} + \frac{Q^{*}(s,a) - U^{*}(s)}{2\alpha}, 0 \right\} & \text{An approximation} \quad \mathbb{E}_{a \sim \pi^{*}} \left[\frac{\pi^{*}(a|s)}{\mu(a|s)} \right] = 1 \\ V^{*}(s) &= U^{*}(s) + \alpha \mathbb{E}_{a \sim \mu} \left[\left(\frac{\pi^{*}(a|s)}{\mu(a|s)} \right)^{2} \right], & U^{*}(s) = V^{*}(s) - \alpha \end{aligned}$$

Lemma 1. We can get $U^*(s)$ by solving the following optimization problem:

$$\begin{split} \min_{U} & \mathbb{E}_{a \sim \mu} \left[\mathbbm{1} \left(\frac{1}{2} + \frac{Q^*(s,a) - U(s)}{2\alpha} > 0 \right) \left(\frac{1}{2} + \frac{Q^*(s,a) - U(s)}{2\alpha} \right)^2 \right] + \frac{U(s)}{\alpha} \\ & \min_{V} & \mathbb{E}_{(s,a) \sim \mathcal{D}} \left[\mathbbm{1} \left(1 + \frac{Q(s,a) - V(s)}{2\alpha} > 0 \right) \left(1 + \frac{Q(s,a) - V(s)}{2\alpha} \right)^2 + \frac{V(s)}{\alpha} \right] \\ & \min_{Q} & \mathbb{E}_{(s,a,s') \sim \mathcal{D}} \left[\left(r(s,a) + \gamma V(s') - Q(s,a) \right)^2 \right] \\ & \max_{\pi} & \mathbb{E}_{(s,a) \sim \mathcal{D}} \left[\mathbbm{1} \left(1 + \frac{Q(s,a) - V(s)}{2\alpha} > 0 \right) \left(1 + \frac{Q(s,a) - V(s)}{2\alpha} \right) \log \pi(a|s) \right] \end{split}$$

Exponential Q-learning(EQL) $\alpha \rightarrow 0$ Reverse KL divergence, $f(x) = \log(x) g_f(x) = \exp(x-1)$

$$Q^{*}(s,a) = r(s,a) + \gamma \mathbb{E}_{s'|s,a} [V^{*}(s')]$$

$$\pi^{*}(a|s) = \mu(a|s) \cdot \exp\left(\frac{Q^{*}(s,a) - U^{*}(s)}{\alpha} - 1\right)$$

$$V^{*}(s) = U^{*}(s) + \alpha \mathbb{E}_{a \sim \mu} \left[\left(\frac{\pi^{*}(a|s)}{\mu(a|s)}\right)^{2} \frac{\mu(a|s)}{\pi^{*}(a|s)}\right]$$

Without any approximation $U^{*}(s) = V^{*}(s) - \alpha$

$$\mathbb{E}_{a \sim \mu} \left[\exp\left(\frac{Q^{*}(s,a) - V^{*}(s)}{\alpha}\right)\right] = 1$$

Lemma 2. We can get $V^*(s)$ by solving the following optimization problem:

$$\min_{V} \mathbb{E}_{a \sim \mu} \left[\exp\left(\frac{Q^{*}(s,a) - V(s)}{\alpha}\right) \right] + \frac{V(s)}{\alpha}$$
$$\min_{V} \mathbb{E}_{(s,a) \sim \mathcal{D}} \left[\exp\left(\frac{Q(s,a) - V(s)}{\alpha}\right) + \frac{V(s)}{\alpha} \right]$$
$$\min_{Q} \mathbb{E}_{(s,a,s') \sim \mathcal{D}} \left[\left(r(s,a) + \gamma V(s') - Q(s,a)\right)^{2} \right]$$
$$\max_{\pi} \mathbb{E}_{(s,a) \sim \mathcal{D}} \left[\exp\left(\frac{Q(s,a) - V(s)}{\alpha}\right) \log \pi(a|s) \right]$$

Analysis

the learning objective of V function is not right

In offline RL, policy is not just dependent on Q or V, but still on behavior policy μ

Experiment

D4RL benchmark

Dataset	BC	10%BC	BCQ	DT	One-step	TD3+BC	CQL	IQL	SQL	EQL
halfcheetah-m	42.6	42.5	47.0	42.6	48.4	48.3	44.0 ±0.8	47.4 ±0.2	48.3 ±0.2	47.2 ±0.3
hopper-m	52.9	56.9	56.7	67.6	59.6	59.3	$\textbf{58.5} \pm 2.1$	66.3 ±5.7	75.5 ±3.4	74.6±2.6
walker2d-m	75.3	75.0	72.6	74.0	81.8	83.7	72.5 ±0.8	$\textbf{72.5} \pm 8.7$	84.2 ±4.6	83.2±4.4
halfcheetah-m-r	36.6	40.6	40.4	36.6	38.1	44.6	45.5 ±0.5	44.2 ±1.2	44.8 ±0.7	44.5±0.5
hopper-m-r	18.1	75.9	53.3	82.7	97.5	60.9	95.0 ±6.4	95.2 ± 8.6	99.7 ±3.3	98.1±3.6
walker2d-m-r	26.0	62.5	52.1	66.6	49.5	81.8	77.2±5.5	76.1 ±7.3	81.2±3.8	76.6±4.2
halfcheetah-m-e	55.2	92.9	89.1	86.8	93.4	90.7	90.7±4.3	86.7±5.3	94.0 ±0.4	90.6±0.5
hopper-m-e	52.5	110.9	81.8	107.6	103.3	98.0	$105.4{\pm}6.8$	101.5 ± 7.3	111.8 ±2.2	105.5±2.1
walker2d-m-e	107.5	109.0	109.0	108.1	113.0	110.1	$109.6{\pm}0.7$	110.6±1.0	110.0±0.8	110.2±0.8
antmaze-u	54.6	62.8	78.9	59.2	64.3	78.6	84.8±2.3	85.5 ±1.9	92.2±1.4	93.2 ±2.2
antmaze-u-d	45.6	50.2	55.0	53.0	60.7	71.4	43.4 ±5.4	66.7 ±4.0	74.0 ±2.3	65.4±2.7
antmaze-m-p	0	5.4	0	0.0	0.3	10.6	65.2±4.8	72.2 ±5.3	80.2 ±3.7	77.5±4.3
antmaze-m-d	0	9.8	0	0.0	0.0	3.0	54.0±11.7	71.0 ±3.2	79.1 ±4.2	70.0±3.7
antmaze-l-p	0	0.0	6.7	0.0	0.0	0.2	38.4±12.3	39.6 ±4.5	53.2 ±4.8	45.6±4.2
antmaze-1-d	0	6.0	2.2	0.0	0.0	0.0	31.6±9.5	47.5 ±4.4	52.3 ±5.2	42.5 ±4.7
kitchen-c	33.8	(=	(i -)	9 - 0	<u>~</u>	-	43.8 ±11.2	61.4 ±9.5	76.4 ±8.7	70.3±7.1
kitchen-p	33.9	-	-		-	-	49.8 ± 10.1	46.1 ±8.5	72.5±7.4	74.5 ±3.8
kitchen-m	47.5		-	677).	-	5	51.0±6.5	52.8 ±4.5	67.4 ±5.4	55.6±5.2

Experiment

The sparsity term SQL will benefit when the datasets contain a large portion of noisy transitions

In-sample learning brings more robustness than out-of-sample learning

Dan	ЛГ	模式识别与神经计算研究组
	۱eu	PAttern Recognition and NEural Computin

SQL

BE

1.6

1.7

2.1

1.9

1.4

1.5

1.3

2.6

Discussion

The difficulty of offline-to-online

State-action distribution shift, especially in narrow datasets

underestimate *Q* of OOD actions excessively MCQ、 Cal-QL

mismatch between actor and critic when offline to online

Discussion

mismatch between actor and critic

$$\begin{aligned} \pi^*(a|s) &= \mu(a|s) \cdot \max\left\{g_f\left(\frac{Q^*(s,a) - U^*(s)}{\alpha}\right), 0\right\} \\ \text{SQL} \quad \pi^*(a|s) &= \mu(a|s) \cdot \max\left\{1 + \frac{Q^* - V^*}{2\alpha}, 0\right\} \approx \mu(a|s) \cdot \exp\left(\frac{Q^* - V^*}{2\alpha}\right) \text{ (Taylor expansion of first order)} \\ \text{EQL} \quad \pi^*(a|s) &= \mu(a|s) \cdot \exp\left(\frac{Q^* - V^*}{\alpha}\right) \end{aligned}$$

energy policy in online RL $\pi(a|s) = \exp\left(\frac{Q-V}{\alpha}\right)$

Offline policy $\pi_{ ext{offline}}(a|s)\!\propto\!\mu(a|s)\pi_{ ext{online}}(a|s)$

Offline critic cannot be used for online updates directly!

 $\pi_{offline}$ is needed, so we should remodel a critic which matches with $\pi_{offline}$ in online RL

Discussion

safe offline-to-online

- 1. obtain $\pi_{offline}$ via offline RL method
- 2. remodel Q and V by offline dataset or adding some online trajectories
- 3. online safe exploration

Thanks