

TC3KD: Knowledge distillation via teacher-student cooperative curriculum customization

Chaofei Wang^a, Ke Yang^b, Shaowei Zhang^c, Gao Huang^a, Shiji Song^{a,*}

^a Department of Automation, Tsinghua University, Beijing, China

^b College of Chemistry, Beijing University of Chemical Technology, Beijing, China

^cSchool of Microelectronics, Tianjin University, Tianjin, China

Knowledge Distillation

Knowledge and Distillation

[1] Gou J, Yu B, Maybank S J, et al. Knowledge distillation: A survey[J]. International Journal of Computer Vision, 2021, 129(6): 1789-1819.

Knowledge

Response-Based Knowledge Distillation Teacher Logits Distillation Loss Student Logits

Fig. 4 The generic response-based knowledge distillation.

Fig. 6 The generic feature-based knowledge distillation.

Relation-Based Knowledge Distillation Teacher t₁ t₂ ... t_n Distillation Loss Student Student Student Instance Relations

Fig. 7 The generic instance relation-based knowledge distillation.

[1] Gou J, Yu B, Maybank S J, et al. Knowledge distillation: A survey[J]. International Journal of Computer Vision, 2021, 129(6): 1789-1819.

Distillation

Fig. 8 Different distillations. The red color for "pre-trained" means networks are learned before distillation and the yellow color for "to be trained" means networks are learned during distillation

[1] Gou J, Yu B, Maybank S J, et al. Knowledge distillation: A survey[J]. International Journal of Computer Vision, 2021, 129(6): 1789-1819.

Knowledge Distillation

cross entropy loss:

total loss:

$$L(B, \theta) = -\frac{1}{|B|} \sum_{(x_i, y_i) \in B} y_i^T \cdot logf(x_i; \theta)$$

 $L^{s}(B, \theta^{s}) = -\frac{1}{|B|} \sum_{(x_{i}, y_{i}) \in B} \{ \lambda y_{i}^{T} \cdot logf(x_{i}; \theta^{s}) + (1 - \lambda) KL[f^{\tau}(x_{i}; \theta^{t}) | | f^{\tau}(x_{i}; \theta^{s})] \},$

Fig. 2. General framework of knowledge distillation.

[2] Wang, Chaofei, et al. "TC3KD: Knowledge distillation via teacher-student cooperative curriculum customization." Neurocomputing 508 (2022): 284-292.

Curriculum Learning

ranking function:

- 1. Difficulty Measurer
- 2. Training Scheduler

Fig. 3. Common paradigm of curriculum learning.

[3]Wang, Xin, Yudong Chen, and Wenwu Zhu. "A survey on curriculum learning." IEEE Transactions on Pattern Analysis and Machine Intelligence 44.9 (2021): 4555-4576.

Curriculum Learning

1. Difficulty Measurer:
$$g(x_i, y_i) > g(x_j, y_j)$$

2、Training Scheduler
$$h: D' \to \{S_1, S_2, S_3 \cdots, S_m\}$$
 (Baby Step算法) $S_1 \subseteq S_2 \subseteq S_3 \subseteq \cdots \subseteq S_m = D'$

Algorithm:1 General curriculum learning method

Input: *M*: initialized model; *D*: training dataset; *g*: difficulty measurer; *h*: training scheduler; *m* the number of subsets;

Output: *M**: optimal model;

1: D' = g(D);

2: $\{S_1, S_2, S_3 \cdots, S_m\} = h(D');$

3: **for**i = 1, 2, ..., m **do**

4: **while**the model *M* does not converge**do**

5: train M with S_i ;

6: end while

7: end for

[2]Wang, Chaofei, et al. "TC3KD: Knowledge distillation via teacher-student cooperative curriculum customization." Neurocomputing 508 (2022): 284-292.

TC3KD: Knowledge distillation via teacher-student cooperative curriculum customization

贡献点:

- 1、课程学习引入到知识蒸馏中,并利用 师牛共同讲行难度度量
- 2、在师生共同进行难度度量时,作者提出一个动态的权重设置,来平衡教师和 学生在不同训练阶段的权重比例
- 3、为了提高蒸馏性能、降低训练成本, 作者提出一种"在平衡中取舍"的训练调度 方法

[2] Wang, Chaofei, et al. "TC3KD: Knowledge distillation via teacher-student cooperative curriculum customization." Neurocomputing 508 (2022): 284-292.

Difficulty Measurer

$$g((x_i, y_i)) = \alpha(-y_i^T \cdot logf(x_i; \theta^t)) + (1 - \alpha)(-y_i^T \cdot logf(x_i; \theta^s)),$$

$$\alpha=1-\frac{k-1}{m}, k=\{1,\cdots,m\},\$$

[2]Wang, Chaofei, et al. "TC3KD: Knowledge distillation via teacher-student cooperative curriculum customization." Neurocomputing 508 (2022): 284-292.

Training Scheduler

$$h: D' \to \{S_1, S_2, S_3 \cdots, S_m\}, \quad S_1 \subseteq S_2 \subseteq S_3 \subseteq \cdots \subseteq S_m = D',$$

instead of sorting of all samples. Specifically, 1) in the first stage, we rank the whole original training set D from easy to hard with the difficulty measurer, and fetch the $\frac{N}{cm}$ c denotes the number of classes) simplest samples from each class to form S_1 . Then, we do distillation on S_1 to get a snapshot student, and update the difficulty measurer. 2) In the second stage, we remove S_1 from the training set, and rank the residual training set $D - S_1$ from easy to hard with the updated difficulty measure. Then, we fetch the simplest samples from each class, which are merged with S_1 to form S_2 . We do distillation on S_2 to get an improved snapshot student, and update the difficulty measurer. 3) We repeat this process until S_m is equal to D. Finally, we conduct distillation on S_m to get the optimal student. The integrated algorithm of TC^3KD is shown in Algorithm 2.

TC3KD

 $g((x_i, y_i)) = \alpha(-y_i^T \cdot logf(x_i; \theta^t)) + (1 - \alpha)(-y_i^T \cdot logf(x_i; \theta^s)),$

Algorithm 2: Algorithm of knowledge distillation via teacherstudent cooperative curriculum customization

Input: $f(\theta^t)$: teacher network, $f(\theta^s)$: student network, $D = \{(x_1, y_1), \dots, (x_N, y_N)\}$: training set, m: the number of training stages, $S_0 = \phi$: initial training subset;

Output: $f^*(\theta^s)$: optimal student network;

1: **for all**
$$k = 1, 2, ..., m$$
do

2:
$$D_k = D - S_{k-1}$$
;

3: calculate
$$\alpha = 1 - \frac{k-1}{m}$$
;

4: calculate the difficulty of samples from D_k by Equ. 3, and get D'_k = ascending sort (D_k) ;

5: select top $\frac{N}{cm}$ samples of each class in D'_k to get S_{top} ;

6:
$$S_k = S_{k-1} \cup S_{top}$$
;

7: **while** $f(\theta^s)$ does not converge**do**

8: Train $f(\theta^s)$ on S_k with Equ. 2;

9: end while

10: end for

$$L^{s}(B, \theta^{s}) = -\frac{1}{|B|} \sum_{(x_{i}, y_{i}) \in B} \{ \lambda y_{i}^{T} \cdot logf(x_{i}; \theta^{s}) \}$$

$$+(1-\lambda)\mathrm{KL}[f^{\tau}(\mathbf{x}_i;\theta^t)||f^{\tau}(\mathbf{x}_i;\theta^s)]\},$$

Experiments

1. Comparison with the mainstream methods

Table 1Comparison results between the mainstream methods and TC³KD on three datasets. Different network structures and teacher-student pairs are adopted. Top 1 accuracy (%) is averagely evaluated in three independent experiments. For the baseline methods, we reproduce the results following their published code. The best results are **bold**.

Dataset	Network structure	Teacher	Student	KD [18]	AT [52]	FitNets [39]	CCKD [37]	SLKD [56]	Ours
CIFAR-100	WRN-40-2/WRN-40-1	76.53	71.95	72.68	72.94	72.94	72.22	72.89	73.55
	ResNet-110/ResNet-20	73.41	68.91	70.67	70.91	70.67	70.88	71.10	71.95
	WRN-40-2/MobileNetV2	76.53	64.49	68.03	68.37	68.19	68.22	68.53	69.11
	ResNet-110/MobileNetV2	73.41	64.49	68.63	68.84	68.62	68.61	69.27	70.08
CINIC-10	ResNet-110/ResNet-20	86.45	82.43	82.58	82.84	82.90	82.98	83.16	83.69
ImageNet	ResNet-34/ResNet-18	73.31	69.75	70.66	70.70	69.89	69.96	70.54	71.13
111	ResNet-50/MobileNetV2	75.54	64.23	66.72	66.85	66.21	66.71	66.31	67.24

2. Combination with the mainstream methods

Table 2Results of combination Teacher-student Cooperative Curriculum Customization (TC^3) with the mainstream methods on CIFAR-100. Different network structures and teacher-student pairs are adopted. Top 1 accuracy (%) is averagely evaluated in three independent experiments. The superscript numbers represent the variations of results after adding TC^3 , ↑ for increase, ↓ for decrease. The improved results with TC^3 are **bold**.

Network structure	Teacher	Student	AT [52]	AT + TC ³	FitNets [39]	FitNets + TC ³	CCKD [37]	CCKD + TC ³
WRN-40-2/WRN-40-1	76.53	71.95	72.94	73.69 ^{†0.75}	72.94	73.29 ^{†0.35}	72.22	71.76 ^{10.46}
ResNet-110/ResNet-20	73.41	68.91	70.91	71.69 ^{†0.78}	70.67	71 .50 ^{†0.83}	70.88	70.6510.23
WRN-40-2/MobileNetV2	76.53	64.49	68.37	70.03 ^{†1.66}	68.19	69.52 ^{†1.33}	68.22	68.25 ^{†0.03}
ResNet-110/MobileNetV2	73.41	64.49	68.84	69.28 ^{†0.44}	68.62	69.58 ^{†0.96}	68.61	68.06 ^{10.55}
Average	74.97	67.46	70.26	71.17 ^{†0.91}	70.10	70.97 ^{†0.87}	69.98	69.68 ^{10.30}

Ablation study

1. Different difficulty measurers.

Table 3Comparison results of different difficulty measurers on CIFAR-100. "DM" denotes difficulty measurer. "Fixed teacher" represents the pre-trained teacher. "Fixed student" represents the trained student by standard KD [18]. Top 1 accuracy (%) is averagely evaluated in three independent experiments. The best results are **bold**.

Structure	Teacher Student	WRN-40-2 WRN-40-1	ResNet-110 ResNet-20
Accuracy	Teacher	76.53	73.41
	Student	71.95	68.91
	KD [18]	72.68	70.67
DM	Fixed teacher	72.33	69.76
	Fixed student	72.77	70.91
	SLKD [56]	72.89	71.10
	TC ³	73.55	71.95

2. Different weight settings.

equ.5
$$\alpha = \frac{k}{m}, k = \{1, \cdots, m\},$$

$$\alpha = 0.5$$

equ.4
$$\alpha = 1 - \frac{k-1}{m}, k = \{1, \dots, m\},\$$

Comparison results of different weight settings on CIFAR-100. "WS" denotes weight setting. "Decreasing α " follows Equ. 4. "Fixed $\alpha=0.5$ " represents equal distribution. "Increasing α " follows Equ. 5. Top 1 accuracy (%) is averagely evaluated in three independent experiments. The best results are **bold**.

Structure	Teacher Student	WRN-40-2 WRN-40-1	ResNet-110 ResNet-20
Accuracy	Teacher	76.53	73.41
	Student	71.95	68.91
	KD [18]	72.68	70.67
WS	Increasing α	69.79	67.52
	Fixed $\alpha = 0.5$	72.82	69.94
	Decreasing α	73.55	71.95

Ablation study

3. Different training schedulers.

Table 5

Comparison results between different training schedulers on CIFAR-100. "TS-1" represents "fetch and remove in balance". "TS-2" represents "fetch and remove without balance". "TS-3" represents "fetch but do not remove in balance". "TS-4" represents "fetch but do not remove without balance". Top 1 accuracy (%) is averagely evaluated in three independent experiments. Computational cost (minutes) is estimated on TITAN Xp. The best results are **bold**.

Network structure	Accuracy of baseline			KD accuracy				Computational cost			
	T	S	KD [18]	TS-1	TS-2	TS-3	TS-4	TS-1	TS-2	TS-3	TS-4
WRN-40-2/WRN-40-1	76.53	71.95	72.68	73.55	72.52	73.43	72.61	7.2	7.2	13.8	13.8
ResNet-110/ResNet-20	73.41	68.91	70.67	71.95	70.21	71.58	70.36	8.5	8.5	16.3	16.3

4. Different stage partitions.

Fig. 5. Ablation study of the number of stages m. WRN-40-2/ WRN-40-1 is adopted as teacher-student pair. Total enochs are fixed 200. We try different m from 1 to 10

Algorithm 2: Algorithm of knowledge distillation via teacherstudent cooperative curriculum customization

Input: $f(\theta^t)$: teacher network, $f(\theta^s)$: student network, $D = \{(x_1, y_1), \dots, (x_N, y_N)\}$: training set, m: the number of training stages, $S_0 = \phi$: initial training subset;

Output: $f^*(\theta^s)$: optimal student network;

1: **for all** k = 1, 2, ..., m**do**

2: $D_k = D - S_{k-1}$;

3: calculate $\alpha = 1 - \frac{k-1}{m}$;

4: calculate the difficulty of samples from D_k by Equ. 3, and get D'_k = ascending sort (D_k) ;

5: select top $\frac{N}{cm}$ samples of each class in D'_k to get S_{top} ;

6: $S_k = S_{k-1} \cup S_{top}$;

7: **while** $f(\theta^s)$ does not converge**do**

8: Train $f(\theta^s)$ on S_k with Equ. 2;

9: end while

10: end for

Conclusion and limitation

1、不适用在语义分割任务上

2、方法的局限性:对基于关系或基于图的知识蒸馏方法不友好

$$L^{s}(B, \theta^{s}) = -\frac{1}{|B|} \sum_{(x_{i}, y_{i}) \in B} \{ \lambda y_{i}^{T} \cdot logf(x_{i}; \theta^{s}) + (1 - \lambda) KL[f^{\tau}(x_{i}; \theta^{t}) | | f^{\tau}(x_{i}; \theta^{s})] \},$$

1: while the student network has not converged do

1: while the student network has not converged do

2:
$$L_{task} = \frac{1}{H \times W} \sum_{h=1}^{H} \sum_{w=1}^{W} CE\left(\sigma\left(\mathbf{Z}_{h,w}\right), \mathbf{y}_{h,w}\right)$$

3: $L_{kd} = \frac{1}{H \times W} \sum_{h=1}^{H} \sum_{w=1}^{W} KL\left(\sigma\left(\frac{\mathbf{Z}_{h,w}^{s}}{T}\right) \| \sigma\left(\frac{\mathbf{Z}_{h,w}^{t}}{T}\right)\right)$

4: if $iter \leq iter_{warm-up}$ then

5: $D_{kl} = f\left(x \mid \theta_{t}\right) \log\left(\frac{f\left(x \mid \theta_{t}\right)}{f_{aux}\left(x \mid \theta_{t}\right)}\right)$

6: $TERD_{e} = \exp\left\{-D_{kl}\right\}$

7: $L_{overall} = TERD_{e} \cdot L_{task} + L_{kd}$

8: else

9: $TSRD_{e} = (f\left(x \mid \theta_{s}\right) \leq t) \oplus (f\left(x \mid \theta_{t}\right) \leq t)$

10: $L_{overall} = TSRD_{e} \cdot L_{task} + L_{kd}$

11: end if

12: $L_{overall}.backward()$

13: end while

14: return θ_{s}

a	0.8	0.9	1.0	1.1	1.2
mIoU	77.18	76.45	76.69	77.16	

结束