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Contrastive Learning for Low-Level Tasks in Computer Vision
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Contrastive learning is one of the most powerful approaches
for representation learning.The goal of contrastive learning is
to bring anchors closer to positive samples while pushing
away negative samples in the latent embedding space

Constrative learning is widely used in the high level field, such as
Moco, simCLR, etc., for classification tasks, but its application in
the low level field is still limited.

In low-level task, we mainly consider the following three aspects:

1.constructing suitable positive and negative samples to construct positive and negative pairs.
2.constructing appropriate models to extract features from the latent feature space.

3.designing a reasonable contrastive loss to pull the anchors into the positive samples and away from
the negative samples in thepotential space.
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Figure 4. Adaptive mixup. The first and second rows are down-

sampling and upsampling operations, respectively.
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Figure 5. Dynamic feature enhancement module.
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Figure 7. Visual comparison on the Dense-Haze dataset.
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Figure 8. Visual comparison on NH-HAZE datasets.




Table 1. Quantitative comparisons with SOTA methods on the synthetic and real-world dehazing datasets.

SOTS [27] Dense-Haze [1] | NH-HAZE [2]

hiliitieid PSNR SSIM | PSNR _ SSIM | PSNR _ SSIM | © param

(TPAMI'10) DCP [17] 1509 0.7649 | 10.06 03856 | 10.57 0.5196 p
(TIP’ 16) DehazeNet [5] 2064 07995 | 13.84 04252 | 16.62 05238 | 0.0IM
(ICCV’17) AOD-Net [25] 19.82 08178 | 13.14 04144 | 1540 05693 | 0.002M
(ICCV’19) GridDehazeNet [20] | 32.16 0.9836 | 1331 03681 | 13.80 0.5370 | 0.96M
(AAAI20) FFA-Net [34] 3639 09886 | 1439 04524 | 19.87 0.6915 | 4.68M
(CVPR’20) MSBDN [ /0] 3379 09840 | 1537 04858 | 1923 0.7056 | 31.35M
(CVPR’20) KDDN [27] 3472 09845 | 1428 04074 | 1739 05897 | 5.99M

(ECCV'20) FDU [11] 3268 09760 | - : : . ;
Ours 37.17 09901 | 15.80 0.4660 | 19.88 0.7173 | 2.6IM

rates on CR. The baseline is AECR-Net with the rate of 1:1.

Rate # Positive # Negative | PSNR  SSIM
1:1 1 | 37.17 0.9901
L 1 10 37.41 0.9906
) 10 I 35.61 0.9862
rov 10 10 35.65 0.9861
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Table 2. Ablation study on AECR-Net. * denotes only positive
Table 4. Comparisons of different positive and negative sample samples are used for training. SC means skip connection.

Model CR PSNR  SSIM

base - 33.85  0.9820
base+mixup - 3404 09838
base+DFE - 35.50 0.9853
base+DFE+SC - 35.59 0.9858
base+DFE+mixup - 36.20  0.9869
base+DFE+mixup+CR*  ,/(w/o negative) 36.46  0.9889
Ours Vv 37.17  0.9901
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Contrastive Learning for Unpaired
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Target: While preserving the structure of the input image, incorporate the appearance of the target image.

Classic example: converting a horse to a zebra

We wish for the output to take on the appearance of the target domain (a zebra), while retaining the structure,
or content, of the specific input horse.
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Multilayer, Patchwise
Contrastive Loss
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Patchwise Contrastive Learning

ff = Gl 2) = ga gt ])

Cycling in two directions is usually included in Cycle GAN, but in the method of this paper,
only one direction of transformation is used, avoiding the use of the opposite direction of
transformation for assisting cycle consistency.
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Patchwise Contrastive Loss

exp(v - vt /7)

(v, v, v7) = —log N -
exp(v-vt/7)+ anl exp(v - vn /7)




\ .ot
((v,v+,v7) = —log ol
exp(v-vt/T)+ > _exp(v-v, /T)

eature
extraction
."'—.‘ Ij
x e enc
L S; anchor positive negative (] il

Lpatennci(G, H, X) = Eqox ZZﬁ(zl,zl, Z ") B

5 Rl

Patchwise Contrastive Loss

s € R c R 27\ e R(Si=)xC,
{21} = {HI(GL(G(@)}1 {2} = {H)(GL,(




Gkt AL E

NANJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS

Lctrmaill B X)) = Byt gip- ZZE(zl,zl,zl

Internal Patches
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External Patches

MoCo: He et al., CVPR20;
: SimCLR: Chen et al., ICML20
. use a large set of external images as negative samples

Lean(G,D, X,Y) + AxLpatehNcE(G, H, X) + Ay Lpatehnce(G, H, Y)

CUT: Ax = Ay =1
FastCUT: Ax = 10.Ay = 0




Successful cases

Failure cases
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Method Cityscapes Cat—Dog Horse-—Zebra
mAPT pixAcet classAcel FID| FID| FID| sec/iter| Mem(GB)]
CycleGAN [39] 204 955.9 25.4 76.3 85.9 7.2 0.40 4.81
MUNIT [44] 16.9 56.5 22.5 91.4 104.4 133.8 0.39 3.84
DRIT [11] 17.0 H8.7 22.2 155.3 123.4 140.0 0.70 4.85
Distance [4] ~ ~ 8.4~ T 4227 T Ti26 ~ 8L.8 T T 1553 T T 720 T T0.15° T T T2 T
SelfDistance [1]  15.3 56.9 20.6 78.8 144.4 80.8 0.16 2.72
GCGAN [17] 012 63.2 26.6 105.2 96.6 86.7 0.26 2.67
o105 247~ 68.8 307  56.4 ~ 762 455 024 333
FastCUT 19.1 59.9 24.3 68.8 94.0 73.4 0.15 2.25
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