

Generative Diffusion Prior for Unified Image Restoration and Enhancement

Ben Fei^{1,2,*}, Zhaoyang Lyu^{2,*}, Liang Pan³, Junzhe Zhang³,
Weidong Yang^{1,†}, Tianyue Luo¹, Bo Zhang², Bo Dai^{2,†}

¹ Fudan University, ²Shanghai AI Laboratory, ³S-Lab, Nanyang Technological University

bfei21@m.fudan.edu.cn, wdyang@fudan.edu.cn, (lvzhaoyang,daibo)@pjlab.org.cn

1. Linear Inverse Image Restoration <u>Denoising Diffusion Restoration Models</u>

image deblurring, super-resolution, and compressive sensing, inpainting, colorization

2. Non-linear Image Restoration.

image low-light enhancement, HDR image recovery, JPEG Artifact Correction

3. Blind Image Restoration

$$\boldsymbol{x}_t = \alpha_t \boldsymbol{x}_{t-1} + \beta_t \boldsymbol{\varepsilon}_t, \quad \boldsymbol{\varepsilon}_t \sim \mathcal{N}(\boldsymbol{0}, \boldsymbol{I})$$

$$oldsymbol{x}_t = \underbrace{(lpha_t \cdots lpha_1)}_{\begin{subarray}{c} oldsymbol{i} eta oldsymbol{eta}_{oldsymbol{t}} + \underbrace{\sqrt{1 - (lpha_t \cdots lpha_1)^2}}_{eta oldsymbol{i} eta oldsymbol{t}_t}, \quad ar{arepsilon}_t \sim \mathcal{N}(oldsymbol{0}, oldsymbol{I})$$

$$\alpha_t \bar{\beta}_{t-1} \bar{\varepsilon}_{t-1} + \beta_t \varepsilon_t$$

$$\beta_t \bar{\varepsilon}_{t-1} - \alpha_t \bar{\beta}_{t-1} \varepsilon_t \\ \mathbb{E}[\varepsilon \omega^\top] = \mathbf{0} \qquad \varepsilon_t = \frac{(\beta_t \varepsilon - \alpha_t \bar{\beta}_{t-1} \omega) \bar{\beta}_t}{\beta_t^2 + \alpha_t^2 \bar{\beta}_{t-1}^2} = \frac{\beta_t \varepsilon - \alpha_t \bar{\beta}_{t-1} \omega}{\bar{\beta}_t}$$

https://kexue.fm/archives/9119

$$\mu(\boldsymbol{x}_t) = \frac{1}{\alpha_t}(\boldsymbol{x}_t - \beta_t \boldsymbol{\epsilon}_{\boldsymbol{\theta}}(\boldsymbol{x}_t, t))$$

$$\left\| \boldsymbol{\varepsilon}_t - \boldsymbol{\epsilon}_{\boldsymbol{\theta}} (\bar{\alpha}_t \boldsymbol{x}_0 + \alpha_t \bar{\beta}_{t-1} \bar{\boldsymbol{\varepsilon}}_{t-1} + \beta_t \boldsymbol{\varepsilon}_t, t) \right\|^2$$

$$\begin{split} & \mathbb{E}_{\bar{\boldsymbol{\varepsilon}}_{t-1}, \boldsymbol{\varepsilon}_{t} \sim \mathcal{N}(\mathbf{0}, \boldsymbol{I})} \left[\left\| \boldsymbol{\varepsilon}_{t} - \boldsymbol{\varepsilon}_{\boldsymbol{\theta}} (\bar{\alpha}_{t} \boldsymbol{x}_{0} + \alpha_{t} \bar{\beta}_{t-1} \bar{\boldsymbol{\varepsilon}}_{t-1} + \beta_{t} \boldsymbol{\varepsilon}_{t}, t) \right\|^{2} \right] \\ & = \mathbb{E}_{\boldsymbol{\omega}, \boldsymbol{\varepsilon} \sim \mathcal{N}(\mathbf{0}, \boldsymbol{I})} \left[\left\| \frac{\beta_{t} \boldsymbol{\varepsilon} - \alpha_{t} \bar{\beta}_{t-1} \boldsymbol{\omega}}{\bar{\beta}_{t}} - \boldsymbol{\varepsilon}_{\boldsymbol{\theta}} (\bar{\alpha}_{t} \boldsymbol{x}_{0} + \bar{\beta}_{t} \boldsymbol{\varepsilon}, t) \right\|^{2} \right] \end{split}$$

$$\left\| \boldsymbol{\varepsilon} - \frac{\bar{\beta}_t}{\beta_t} \boldsymbol{\epsilon}_{\boldsymbol{\theta}} (\bar{\alpha}_t \boldsymbol{x}_0 + \bar{\beta}_t \boldsymbol{\varepsilon}, t) \right\|^2$$

南京航空航天大學 NANJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS

$$q(x_1, \dots, x_T \mid x_0) = \prod_{t=1}^{T} q(x_t \mid x_{t-1}),$$
 (1)

$$x_t = \sqrt{\bar{\alpha}_t} x_0 + \sqrt{1 - \bar{\alpha}_t} \epsilon, \qquad (2)$$

$$p_{\boldsymbol{\theta}}(\boldsymbol{x}_{0}, \cdots, \boldsymbol{x}_{T-1} \mid \boldsymbol{x}_{T}) = \prod_{t=1}^{T} p_{\boldsymbol{\theta}}(\boldsymbol{x}_{t-1} \mid \boldsymbol{x}_{t}),$$

$$p_{\boldsymbol{\theta}}(\boldsymbol{x}_{t-1} \mid \boldsymbol{x}_{t}) = \mathcal{N}(\boldsymbol{x}_{t-1}; \boldsymbol{\mu}_{\boldsymbol{\theta}}(\boldsymbol{x}_{t}, t), \boldsymbol{\Sigma}_{\boldsymbol{\theta}} \boldsymbol{I})$$
(3)

$$\mu_{\theta}\left(x_{t},t\right)=rac{1}{\sqrt{lpha_{t}}}\left(x_{t}-rac{eta_{t}}{\sqrt{1-ar{lpha}_{t}}}\epsilon_{ heta}\left(x_{t},t
ight)
ight)$$
 (4)

$$\tilde{\boldsymbol{x}}_{0} = \frac{\boldsymbol{x}_{t}}{\sqrt{\bar{\alpha}_{t}}} - \frac{\sqrt{1 - \bar{\alpha}_{t}} \epsilon_{\theta} \left(\boldsymbol{x}_{t}, t\right)}{\sqrt{\bar{\alpha}_{t}}}$$
 (5)

$$\begin{split} q\left(x_{t-1} \mid x_{t}, \tilde{x}_{0}\right) &= \mathcal{N}\left(x_{t-1}; \tilde{\mu}_{t}\left(x_{t}, \tilde{x}_{0}\right), \tilde{\beta}_{t}\mathbf{I}\right), \\ \text{where} \quad \tilde{\mu}_{t}\left(x_{t}, \tilde{x}_{0}\right) &= \frac{\sqrt{\bar{\alpha}_{t-1}}\beta_{t}}{1 - \bar{\alpha}_{t}} \tilde{x}_{0} + \frac{\sqrt{\alpha_{t}}\left(1 - \bar{\alpha}_{t-1}\right)}{1 - \bar{\alpha}_{t}} x_{t} \\ \text{and} \quad \tilde{\beta}_{t} &= \frac{1 - \bar{\alpha}_{t-1}}{1 - \bar{\alpha}_{t}} \beta_{t} \end{split} \tag{6}$$

$$oldsymbol{y} = \mathcal{D}(oldsymbol{x}).$$

$$p_{\boldsymbol{\theta}}\left(\boldsymbol{x}_{t-1}|\boldsymbol{x}_{t},\boldsymbol{y}\right).$$

$$\log p_{\theta} (\boldsymbol{x}_{t-1} | \boldsymbol{x}_{t}, \boldsymbol{y}) = \log (p_{\theta} (\boldsymbol{x}_{t-1} | \boldsymbol{x}_{t}) p (\boldsymbol{y} | \boldsymbol{x}_{t})) + K_{1}$$

$$\approx \log p(\boldsymbol{r}) + K_{2},$$
(7)

$$egin{array}{lll} oldsymbol{r} & \sim & \mathcal{N}\left(oldsymbol{r}; oldsymbol{\mu_{ heta}}\left(oldsymbol{x}_{t},t
ight) + \Sigmaoldsymbol{g}, \Sigma
ight) \ oldsymbol{g} & = &
abla_{oldsymbol{x}_{t}}\log p\left(oldsymbol{y} \mid oldsymbol{x}_{t}
ight) & : \Sigma = \Sigma_{ heta}\left(oldsymbol{x}_{t}
ight) \end{array}$$

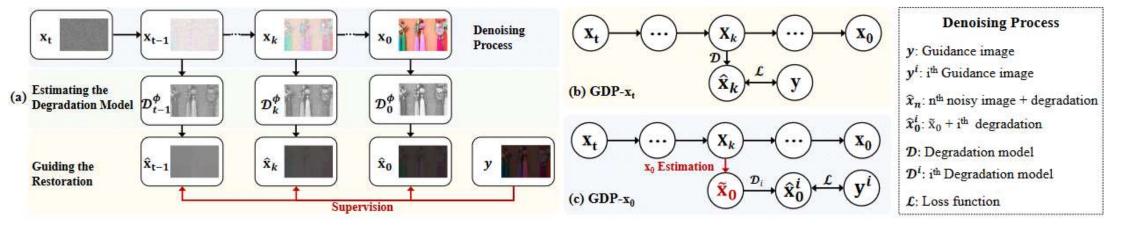
$$p(y \mid x_t) = \frac{1}{Z} \exp\left(-\left[s\mathcal{L}\left(\mathcal{D}(x_t), y\right) + \lambda \mathcal{Q}(x_t)\right]\right) \quad (8)$$

a heuristic approximation

- image distance metric
- Z normalization factor
- s a scaling factor controlling the magnitude of guidance
- Q the optional quality enhancement loss
- λ i scale factor for adjusting the quality of images

$$\log p(y \mid x_t) = -\log Z - s\mathcal{L}(\mathcal{D}(x_t), y) - \lambda \mathcal{Q}(x_t)$$

$$\nabla_{x_t} \log p(y \mid x_t) = -s\nabla_{x_t}\mathcal{L}(\mathcal{D}(x_t), y) - \lambda \nabla_{x_t}\mathcal{Q}(x_t).$$
(9)



the way of adding guidance and the variance Σ negatively influence the reconstructed images. The Influence of Variance Σ on the Guidance.

Guidance on xt

Algorithm 1: GDP- x_t with fixed degradation model: Conditioner guided diffusion sampling on x_t , given a diffusion model $(\mu_{\theta}(x_t), \Sigma_{\theta}(x_t))$, corrupted image conditioner y.

```
Input: Corrupted image y, gradient scale s, degradation model \mathcal{D}, distance measure \mathcal{L}, optional quality enhancement loss \mathcal{Q}, quality enhancement scale \lambda.

Output: Output image x_0 conditioned on y

Sample x_T from \mathcal{N}(0,\mathbf{I})

for t from T to I do

\begin{array}{c} \mu, \Sigma = \mu_{\theta}\left(x_t\right), \Sigma_{\theta}\left(x_t\right) \\ \mathcal{L}_{x_t}^{total} = \mathcal{L}(y,\mathcal{D}\left(x_t\right)) + \mathcal{Q}\left(x_t\right) \\ \text{Sample } x_{t-1} \text{ by } \mathcal{N}\left(\mu + s\nabla_{x_t}\mathcal{L}_{x_t}^{total}, \Sigma\right) \\ \text{end} \\ \text{return } x_0 \end{array}
```

Guidance on \tilde{x}_0 .

```
Algorithm 2: GDP-x_0: Conditioner guided dif-
fusion sampling on \tilde{x}_0, given a diffusion model
 (\mu_{\theta}(x_t), \Sigma_{\theta}(x_t)), corrupted image conditioner y.
   Input: Corrupted image y, gradient scale s, degradation model
                  \mathcal{D}_{\phi} with randomly initiated parameters \phi, learning rate l
                  for optimizable degradation model, distance measure \mathcal{L},
                  optional quality enhancement loss Q, quality
                  enhancement scale \lambda.
    Output: Output image x_0 conditioned on y
   Sample x_T from \mathcal{N}(0, \mathbf{I})
   for t from T to 1 do
           egin{aligned} \mu, \Sigma &= \mu_{	heta}\left(oldsymbol{x}_{t}
ight), \Sigma_{	heta}\left(oldsymbol{x}_{t}
ight) \ 	ilde{oldsymbol{x}}_{0} &= rac{oldsymbol{x}_{t}}{\sqrt{ar{lpha}_{t}}} - rac{\sqrt{1-ar{lpha}_{t}}\epsilon_{	heta}\left(oldsymbol{x}_{t},t
ight)}{\sqrt{ar{lpha}_{t}}} \ \mathcal{L}_{\phi,	ilde{oldsymbol{x}}_{0}}^{total} &= \mathcal{L}(oldsymbol{y}, \mathcal{D}_{\phi}\left(	ilde{oldsymbol{x}}_{0}
ight)) + \mathcal{Q}\left(	ilde{oldsymbol{x}}_{0}
ight) \end{aligned}
                                                                                                                       y = fx + M
            \phi \leftarrow \phi - l \nabla_{\phi} \mathcal{L}_{\phi, \tilde{x}_0}^{total}
            Sample x_{t-1} by \mathcal{N}\left(\mu + s\nabla_{\widetilde{x}_0}\mathcal{L}_{\phi,\widetilde{x}_0}^{total}, \Sigma\right)
    end
   return x<sub>0</sub>
```


Reconstruction Loss.

Quality Enhancement Loss.

MSE

structural similarity index measure

perceptual loss

Exposure Control Loss

Color Constancy Loss

Illumination Smoothness Loss

Figure 3. Qualitative comparison of colorization results on ImageNet validation images. GDP- x_0 generates various samples on the same input.

Table 2. Quantitative comparison of linear image restoration tasks on ImageNet 1k [62]. GDP outperforms other methods in terms of FID and Consistency across all tasks.

Method	4× Super-resolution				Deblur			25% Inpainting				Colorization				
	PSNR ↑	SSIM ↑	Consistency ↓	FID↓	PSNR ↑	SSIM	↑ Consistency↓	FID↓	PSNR ↑	SSIM ↑	Consistency	FID↓	PSNR ↑	SSIM ↑	Consistency ,	↓ FID ↓
DGP [62]	21.65	0.56	158.74	152.85	26.00	0.54	475.10	136.53	27.59	0.82	414.60	60.65	18.42	0.71	305.59	94.59
SNIPS [33]	22.38	0.66	21.38	154.43	24.73	0.69	60.11	17.11	17.55	0.74	587.90	103.50		117.	: -	
RED [69]	24.18	0.71	27.57	98.30	21.30	0.58	63.20	69.55	1/2/1	_	2	2	1021	7/27	2	120
DDRM [32]	26.53	0.78	19.39	40.75	35.64	0.98	50.24	4.78	34.28	0.95	4.08	24.09	22.12	0.91	37.33	47.05
$GDP-x_t$	24.27	0.67	80.32	64.67	25.86	0.75	54.08	5.00	31.06	0.93	8.80	20.24	21.30	0.86	75.24	66.43
$GDP-x_0$	24.42	0.68	6.49	38.24	25.98	0.75	41.27	2.44	34.40	0.96	5.29	16.58	21.41	0.92	36.92	37.60

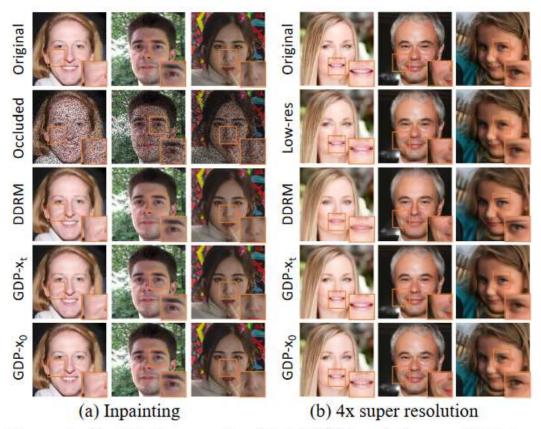


Figure 4. Qualitative results of (a) 25 % inpainting and (b) $4 \times$ super-resolution on CelebA [31].

Figure 5. Results of image deblurring task on 256×256 USC-SIPI images [87] using an ImageNet model.

南京航空航天大學



Figure 6. Qualitative results of low-light enhancement on the LOL [88], VE-LOL [47], and LoLi-Phone [41] datasets.

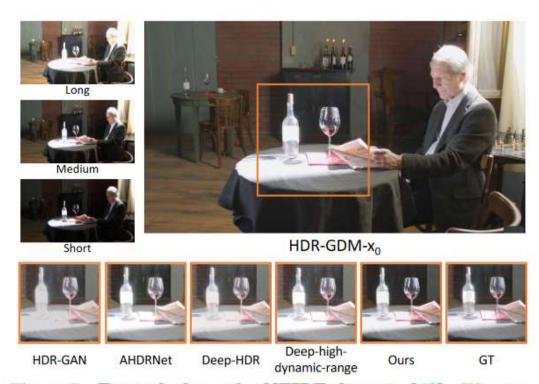


Figure 7. Example from the NTIRE dataset [63]. We compare a set of patches cropped from the tone-mapped HDR images generated by state-of-the-art methods.

Table 4. Quantitative comparison on the NTIRE dataset [63].

Methods	PSNR↑	SSIM↑	LPIPS ↓	FID\
AHDRNet [91]	18.72	0.58	0.39	81.98
HDR-GAN [59]	21.67	0.74	0.26	52.71
Deep-HDR [90]	21.66	0.76	0.26	57.52
Deep-high-dyna mic-range [30]	21.33	0.71	0.26	51.92
$GDP-x_t$	19.36	0.65	0.30	63.89
$GDP-x_0$	24.88	0.86	0.13	50.05

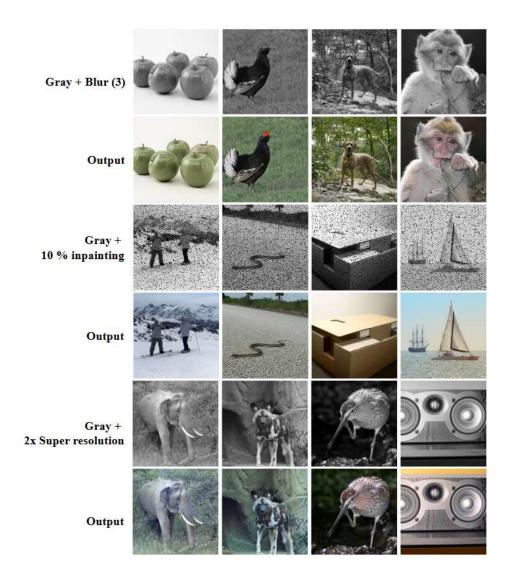
Table 5. The ablation study on the variance $\boldsymbol{\Sigma}$ and the way of the guidance.

T. J.		4× Suj	per resolution	Deblur					
Task	PSNR	SSIM	Consistency	FID	PSNR	SSIM	Consistency	FID	
$rac{ ext{GDP} \cdot x_t}{ ext{with} \; \Sigma}$	22.86	0.60	88.37	68.04	22.06	0.57	69.46	80.39	
$\frac{GDP}{with} \mathbf{\Sigma}$	22.09	0.58	93.19	41.22	23.49	0.65	68.67	50.29	
GDP - x_t	24.27	0.67	80.32	64.67	25.86	0.73	54.08	5.00	
$GDP - x_0$	24.42	0.68	6.49	38.24	25.98	0.75	41.27	2.44	

Task		25%	Inpainting		Colorization					
Task	PSNR	SSIM	Consistency	Consistency FID PSNR SSIM Consistency		FID				
$\operatorname{GDP} -x_t$ with Σ	25.28	0.70	171.44	73.32	17.67	0.70	246.26	145.20		
$GDP - x_0$ with Σ	24.58	0.75	65.59	22.77	21.28	0.91	66.57	38.39		
$GDP-x_t$	31.06	0.93	8.80	20.24	21.30	0.86	75.24	66.43		
$GDP-x_0$	34.40	0.96	5.29	16.58	21.41	0.92	36.92	37.60		

Table 6. The ablation study on the optimizable degradation and patch-based tactic.

Mathada	ľ		LOL		NTIRE PSNR SSIM LPIPS FID					
Methods	PSNR	SSIM	FID	LOE	PI	PSNR	SSIM	LPIPS	FID	
Model A	11.05	0.49	156.51	707.57	8.61	24.12	0.67	0.32	86.69	
Model B	9.01	0.37	355.99	969.89	9.04	9.83	0.04	1.02	253.11	
$ ext{GDP-}x_t$	7.32	0.57	238.92	364.15	8.26	19.36	0.65	0.30	63.89	
$GDP-x_0$	13.93	0.63	75.16	110.39	6.47	24.88	0.86	0.13	50.05	



结束