Dual Student Networks for Data-Free Model Stealing

James Beetham^{1*}, Navid Kardan^{1*}, Ajmal Mian², Mubarak Shah¹

¹Center for Research in Computer Vision University of Central Florida Orlando, Florida 32816, USA {james.beetham, kardan}@knights.ucf.edu ajmal.mian@uwa.edu.au shah@crcv.ucf.edu
²Department of Computer Science University of Western Australia Crawley WA 6009, Australia

ICLR 2023

Model Stealing

Motivation:

- 1. Downstream adversarial attacks
- 2. Monetary gains

Downstream adversarial attacks

Attacks

Membership Inference Attack:

Refers to the black box access permission of a given data record and a model to determine whether the record is in the training data set of the model.

Model Inversion Attack:

Figure 1: An image recovered using a new model inversion attack (left) and a training set image of the victim (right). The attacker is given only the person's name and access to a facial recognition system that returns a class confidence score.

knowledge distillation vs black-box model stealing vs Data-free model stealing

- Same: obtaining a student model which imitates the target model
- Differences:
- 1. Knowledge distillation environments typically retain full knowledge of the target model training data and weights;
- 2. Black-box model stealing eliminates the need to have access to the target model weights and training data (black-box model stealing typically uses real-world data samples to train the student network);
- 3. Data-free model stealing leveraging a generator to produce data samples.

Previous Data-free Model Stealing

• DFME <u>Data-free model extraction (CVPR 2021)</u>

The generator is optimized to maximize the distance between student and target model outputs.

 DFMS-HL <u>Towards Data-Free Model Stealing in a Hard Label</u> <u>Setting (CVPR 2022)</u>

The generator-discriminator is optimized to generate samples similar to a synthesized dataset which have balanced student classifications.

In both approaches, a student is optimized to minimize the distance between the student and target model outputs.

DUAL STUDENTS METHOD

• For target *T*, generator *G*, student *S*, and noise *z*, the objective for solving data-free model stealing is to optimize:

$$\min_{S} \max_{G} ||T(G(z)) - S(G(z))||_p.$$

• For student *S* :

$$\min_{\theta_S} \mathcal{L}_S(S(G(z;\theta_G);\theta_S), T(G(z;\theta_G))),$$

• For generator *G* :

$$\min_{\theta_G} - \mathcal{L}_G(S(G(z;\theta_G);\theta_S), T(G(z;\theta_G))).$$

- Due to the limited black-box access to the target model, we can't update G directly.
- Generator loss doesn't directly promote a diversity of classes within the generated images.

APPROXIMATING GRADIENT WITH DUAL STUDENTS

Towards making objective differentiable

• we propose adding an additional student S_2 to solve the following optimization problem:

$$\min_{S_1,S_2} \max_{G} ||S_1(x) - T(x)||_p + ||S_2(x) - T(x)||_p.$$

• For generator G :

$$\max_{G} ||S_1(G(z)) - S_2(G(z))||_p.$$

This optimization for Generator G removes the Target model T and makes the problem directly differentiable.

$$\max_{G} ||S_1(G(z)) - S_2(G(z))||_p. \quad Why?$$

$$||S_1(x) - S_2(x)||_p \le ||S_1(x) - T(x)||_p + ||S_2(x) - T(x)||_p.$$

The Left of the inequality corresponds to the generator's loss in Dual Student with x = G(z), and the Right is the minimization desired with an additional student. In other words, when the LHS is maximized during generator optimization, the lower bound is increasing:

$$\max_{x} ||S_1(x) - S_2(x)||_p \le \max_{x} ||S_1(x) - T(x)||_p + ||S_2(x) - T(x)||_p.$$

DUAL STUDENTS METHOD

Figure 2: The distance between the true and estimated target model gradients of either Generated images or Real images. The gradient is computed w.r.t. input image x, and a formal description of the distance used is provided in Eq. 6. (a) Cross-Entropy loss is used to compute the gradient in the hard-label setting, and (b) ℓ_1 loss is used in the soft-label setting. Real images are from the test split of the CIFAR10 dataset.

Dataset	Target Accuracy	Method	Probabilities	Hard-Labels
MNIST	99.66	DFME	99.15	97.85
IVIINIS I	99.66	DS	99.36	99.25
FashionMNIST	93.84	DFME	85.17	48.91
	93.84	DS	91.17	80.53
GTSRB	97.21	DFME	96.35	85.69
	97.21	DS	96.40	93.20
SVHN	96.20	DFME	95.33	93.87
	96.20	DS	95.72	95.43
CIFAR10	95.5	DFME	88.10	68.40
	95.5	DS	91.34	78.72
	95.5	DFMS-SL/HL	88.51	79.61
	95.5	DFMS-SL/HL + DS	89.38	85.06
CIFAR100	77.99	DFME	26.46	6.91
	77.99	DS	45.32	9.77
	77.99	DFMS-SL/HL	44.86	35.78
	77.99	DFMS-SL/HL + DS	50.98	36.38

Figure 3: Class distribution of generated classes at the end of training for CI-FAR10 dataset. Dual Student is able to produce more balanced samples.

- Target - Proxy - Dual Students - DFME - DFMS-HL

Figure 4: Accuracy on Target Model of perturbed images generated using PGD attack with varying epsilons $(\frac{\epsilon}{255})$ where different soft-label DFMS student models are used.

Table 2: Attack success percentage of different DFMS methods on the Target Model trained on CIFAR10 when attack $\epsilon = \frac{3}{255}$. All attacks are evaluated on the Target Model. The Target Model row is a white-box attack, Proxy Model is a transfer-based black-box attack where the proxy is trained using the same data as the target model. The other DFMS methods provide trained student models which act as the proxy in transfer-based black-box attacks.

Attack	Method	Untargeted Attacks		Targeted Attacks	
Attack	Wiethou	Probabilities	Hard-Labels	Probabilities	Hard-Labels
FGSM	Target Model	45.00		19.64	
	Proxy Model	33.12		14.38	
	DFME	56.84	39.22	21.07	17.15
	DS	62.35	44.58	21.58	21.04
	DFMS-HL/SL	54.88	48.89	19.74	21.85
	DFMS-HL/SL + DS	54.99	50.41	20.53	23.59
PGD	Target Model	96.78		76.32	
	Proxy Model	55.01		28.33	
	DFME	83.59	54.71	51.97	31.49
	DS	91.04	62.21	61.96	33.39
	DFMS-HL/SL	81.97	72.40	52.64	39.95
	DFMS-HL/SL + DS	81.04	73.08	51.38	42.53

Thanks