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Motivation:

1. Downstream adversarial attacks
2. Monetary gains



. Downstream adversarial attacks —
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Membership Inference Attack:

Refers to the black box access permission of a given data record and a model to determine
whether the record is in the training data set of the model.
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Model Inversion Attack:

Figure 1: An image recovered using a new model in-
version attack (left) and a training set image of the
victim (right). The attacker is given only the per-
son’s name and access to a facial recognition system
that returns a class confidence score.



. Data-free Model Stealing _

knowledge distillation vs black-box model stealing vs Data-free model stealing
* Same: obtaining a student model which imitates the target model

* Differences:
1. Knowledge distillation environments typically retain full knowledge of the target

model training data and weights;

2. Black-box model stealing eliminates the need to have access to the target model
weights and training data (black-box model stealing typically uses real-world
data samples to train the student network);

3. Data-free model stealing leveraging a generator to produce data samples.



. Previous Data-free Model Stealing _

e DFME Data-free model extraction (CVPR 2021)

The generator is optimized to maximize the distance between
student and target model outputs.

e DFMS-HL Towards Data-Free Model Stealing in a Hard Label
Setting (CVPR 2022)

The generator-discriminator is optimized to generate samples
similar to a synthesized dataset which have balanced student
classifications.

In both approaches, a student is optimized to minimize the distance between the
student and target model outputs.
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® For target T, generator G, student S, and noise z, the objective for solving
data-free model stealing is to optimize:

minmax||T(G(2)) = S(G(2)llp.
® For student S:

ngiiqn Ls(S(G(z:0c):05), T(G(z:0a))),

® For generator G :

1?311’1 —Lc(S(G(z;0¢);05), T(G(z;0¢)))-

* Due to the limited black-box access to the target model, we can’t update G directly.
e Generator loss doesn’t directly promote a diversity of classes within the generated images.



Bl APPROXIMATING GRADIENT WITH DUAL STUDENTS [ B

Towards making objective differentiable

® we propose adding an additional student S, to solve the following
optimization problem:

min 1113}:\\51(1-') — T'(z)|lp +

ng ,SQ

|S2 () = T'()|lp.

® For generator G :

max |51 (G(2)) — S2(G(2))]lp-

This optimization for Generator G removes the Target model T
and makes the problem directly differentiable.



Bl APPROXIMATING GRADIENT WITH DUAL STUDENTS [ B

max|[|51(G(2)) = S2(G(2))[lp.  Why?

|S1(z) — Sa(z)||p < ||S1(z) — T'(x)]||p +

So(z) — T(2)|]5-:

The Left of the inequality corresponds to the generator’s loss in Dual Student with

x = G(z),and the Right is the minimization desired with an additional student. In
other words, when the LHS is maximized during generator optimization, the lower

bound is increasing:

111;1}{ HSl(J.‘) — SQ(JT)HP a“ 1115?}{ HSI (4.‘) — T(ttf)Hp — HS2(J_.') — T(“E)HP'
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Figure 2: The distance between the true and estimated target model gradients of either Generated
images or Real images. The gradient is computed w.r.t. input image x, and a formal description of
the distance used is provided in Eq. 6] (a) Cross-Entropy loss is used to compute the gradient in the
hard-label setting, and (b) #; loss 1s used in the soft-label setting. Real images are from the test split
of the CIFAR10 dataset.



I coeimen I

Dataset Target Accuracy Method Probabilities | Hard-Labels
99.66 DFME 99.15 97.85
MINIRT 99.66 DS 99.36 99.25
. 93.84 DFME 85.17 48.91
pen 93.84 DS 91.17 80.53
97.21 DFME 96.35 85.69
GLIRB 97.21 DS 96.40 93.20
96.20 DFME 95.33 03.87
SRS 96.20 DS 95.72 95.43
95.5 DFME 88.10 68.40
93.5 DS 91.34 18.72
CIFARIO 93.5 DFMS-SL/HL 88.51 79.61
93.5 DFMS-SL/HL + DS 89.38 85.06
771.99 DFME 26.46 6.91
77.99 DS 45.32 9.77
ClEaR100 .39 DFMS-SL/HL 44.86 35.78
77.99 DEMS-SL/HL + DS 50.98 36.38
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Figure 3: Class distribution of gener-
ated classes at the end of training for CI-

FARI10 dataset. Dual Student 1s able to
produce more balanced samples.
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Figure 4: Accuracy on Target Model of perturbed im-
ages generated using PGD attack with varying epsilons
(5e¢) where different soft-label DFMS student models

are used.
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Table 2: Attack success percentage of different DFMS methods on the Target Model trained on
CIFAR10 when attack € = 2—25 All attacks are evaluated on the Target Model. The Target Model
row is a white-box attack, Proxy Model is a transfer-based black-box attack where the proxy is
trained using the same data as the target model. The other DFMS methods provide trained student
models which act as the proxy in transfer-based black-box attacks.

Atk Method Untargeted Attacks Targeted Attacks
Probabilities | Hard-Labels | Probabilities | Hard-Labels

Target Model 45.00 19.64

Proxy Model 33.12 14.38
FGSM DFME 56.84 39.22 21.07 1'4:15
DS 62.35 44,58 21.58 21.04
DFMS-HL/SL 54.88 48.89 19.74 21.85
DFMS-HL/SL + DS 54.99 50.41 20.53 23.59

Target Model 96.78 #6.32

Proxy Model 55.01 28.33
PGD DFME 83.59 54.71 2L97 31.49
DS 91.04 62.21 61.96 33.39
DEMS-HL/SL 81.97 72.40 52.64 39.95
DFMS-HL/SL + DS 81.04 73.08 51.38 42.53
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