



# How to Exploit Hyperspherical Embeddings for Out-of-Distribution Detection?

Yifei Ming<sup>1</sup>, Yiyou Sun<sup>1</sup>, Ousmane Dia<sup>2</sup>, Yixuan Li<sup>1</sup> Department of Computer Sciences, University of Wisconsin-Madison<sup>1</sup> Meta<sup>2</sup> {alvinming, sunyiyou, sharonli}@cs.wisc.edu, ousamdia@meta.com

ICLR 2023

# Background



#### The task of OOD Detection



Mathematically, let  $\mathcal{D}_{test}^{ood}$  denote an OOD test set where the label space  $\mathcal{Y}^{ood} \cap \mathcal{Y}^{in} = \emptyset$ . The decision can be made via a level set estimation:

$$G_{\lambda}(x) = \mathbb{1}\{S(x) \ge \lambda\},\$$

where samples with higher scores S(x) are classified as ID and vice versa. The threshold  $\lambda$  is typically chosen so that a high fraction of ID data (*e.g.* 95%) is correctly classified.

➤ Using the model's confidence score for OOD detection, which can be abnormally high on OOD samples.

Distance-based methods leverage feature embeddings extracted from a model, and operate under the assumption that the test OOD samples are relatively far away from the clusters of ID data.

# Background



# Hyperspherical embeddings



# Naturally modeled by the von Mises-Fisher (vMF) distribution:

$$p_d\left(\mathbf{z};\boldsymbol{\mu}_c,\boldsymbol{\kappa}\right) = \frac{\kappa^{\frac{p}{2}-1}}{(2\pi)^{\frac{p}{2}}I_{\frac{p}{2}-1}(\boldsymbol{\kappa})} e^{\kappa\vec{\mu}^T\vec{z}} = Z_d(\boldsymbol{\kappa})\exp\left(\kappa\boldsymbol{\mu}_c^{\top}\mathbf{z}\right)$$

A hypersphere is a topological space that is homeomorphic to a standard n-sphere, which is the set of points in (n + 1)-dimensional Euclidean space that are located at a constant distance from the center. When the sphere has a unit radius, it is called the unit hypersphere. Formally, an n-dimensional unit-hypersphere

$$S^{n} := \{ z \in \mathbb{R}^{n+1} | ||z||_{2} = 1 \}$$

Geometrically, hyperspherical embeddings lie on the surface of a hypersphere.

# **Motivation**



#### **Previous work**

> Arguably, the efficacy of distance-based approaches can depend largely on the quality of feature embeddings.

Recent works including SSD+ and KNN+ directly employ off-the-shelf contrastive losses for OOD detection.

They use the SupCon for learning the embeddings, which are then used for OOD detection with either parametric Mahalanobis distance or non-parametric KNN distance.

(Example) When trained on CIFAR-10 using SupCon loss, the average angular distance between ID and OOD data is only 29.86 degrees in the embedding space, which is too small for effective ID-OOD separation.

> Two properties

- Each sample has a higher probability assigned to the correct class in comparison to incorrect classes
- > Different classes are far apart from each other.

Method



#### **Framework Overview**

#### Compactness and Dispersion Regularized (CIDER)



A deep neural network encoder  $f : \mathcal{X} \mapsto \mathbb{R}^e$  that maps the augmented input to a high dimensional feature

A projection head:  $h : \mathbb{R}^e \to \mathbb{R}^d$  maps high-dim feature to a lower-dim feature





#### **Desirable Hyperspherical Embeddings in the Open World**



ID and OOD Samples on the hypersphere





#### Preliminaries

≻Multi-class classification

 $\mathcal{X}$  denotes the input space

 $\mathcal{Y}^{in} = \{1, 2, ..., C\}$  denotes the ID labels.

The training set  $\mathcal{D}_{tr}^{in} = \{(x_i, y_i)\}_{i=1}^N$  is drawn *i.i.d.* from  $P_{\mathcal{X}\mathcal{Y}^{in}}$ .

 $P_{\mathcal{X}}$  denote the marginal distribution over  $\mathcal{X}$ , which is called the in-distribution (ID).





#### **Modeling Hyperspherical Embeddings**

#### ► Intra-class compactness

- > Augmented input  $\tilde{x} \to \text{high-dim}$  feature  $f(\tilde{x}) \to \text{low-dim}$  feature  $\tilde{z} = h(f(\tilde{x}))$
- → Hyperspherical (  $l_2$ -normalized) feature  $z = \tilde{z}/\|\tilde{z}\|_2$

#### > von-Mises-Fisher (vMF) distribution

$$p_{d}(\mathbf{z};\boldsymbol{\mu}_{c},\kappa) = \frac{\kappa^{\frac{p}{2}-1}}{(2\pi)^{\frac{p}{2}}I_{\frac{p}{2}-1}(\kappa)} e^{\kappa \vec{\mu}^{T}\vec{z}} = Z_{d}(\kappa) \exp\left(\kappa \boldsymbol{\mu}_{c}^{\top}\mathbf{z}\right) \quad \mathbb{P}\left(y = c \mid \mathbf{z}; \left\{\kappa, \boldsymbol{\mu}_{j}\right\}_{j=1}^{C}\right) = \frac{Z_{d}(\kappa) \exp\left(\kappa \boldsymbol{\mu}_{c}^{\top}\mathbf{z}\right)}{\sum_{j=1}^{C}Z_{d}(\kappa) \exp\left(\kappa \boldsymbol{\mu}_{j}^{\top}\mathbf{z}\right)}$$
  

$$\succ \mu_{c} \text{ is the class prototype (mean) of class c} = \frac{\exp\left(\boldsymbol{\mu}_{c}^{\top}\mathbf{z}/\tau\right)}{\sum_{j=1}^{C}\exp\left(\boldsymbol{\mu}_{c}^{\top}\mathbf{z}/\tau\right)},$$

 $\succ \kappa$  indicates the spread of the distribution around mean direction





#### **Modeling Hyperspherical Embeddings**

#### ➢Inter-class dispersion

Optimize large angular distances among different class prototypes

 $\mathcal{L}_{\text{dis}} = \frac{1}{C} \sum_{i=1}^{C} \log \frac{1}{C-1} \sum_{j=1}^{C} \mathbb{1}\{j \neq i\} e^{\boldsymbol{\mu}_{i}^{\top} \boldsymbol{\mu}_{j}/\tau}.$ 

Compactness and Dispersion Regularized Learning (CIDER)

$$\mathcal{L}_{ ext{CIDER}} = \mathcal{L}_{ ext{dis}} + \lambda_c \mathcal{L}_{ ext{comp}}$$

➢Update of class prototypes

> Class prototypes are initialized as the classwise mean  $\mu_c$  using the training set

➤ Updated via exponential-moving-average (EMA):

$$\boldsymbol{\mu}_{c} := \text{Normalize} \left( \alpha \boldsymbol{\mu}_{c} + (1 - \alpha) \mathbf{z} \right), \forall c \in \{1, 2, \dots, C\}$$





#### **Pseudo-code for CIDER**

Algorithm 1: Pseudo-code of CIDER.

1 Input: Training dataset  $\mathcal{D}$ , neural network encoder f, projection head h, classifier q, class prototypes  $\mu_i$  $(1 \le j \le C)$ , weights of loss terms  $\lambda_d$ , and  $\lambda_c$ , temperature  $\tau$ **2** for epoch = 1, 2, ..., dofor iter = 1, 2, ..., do3 sample a mini-batch  $B = {\mathbf{x}_i, y_i}_{i=1}^{b}$ 4 obtain augmented batch  $\tilde{B} = {\{\tilde{\mathbf{x}}_i, \tilde{y}_i\}_{i=1}^{2b}}$  by applying two random augmentations to  $\mathbf{x}_i \in B$ 5  $\forall i \in \{1, 2, \dots, b\}$ for  $\tilde{\mathbf{x}}_i \in B$  do 6 // obtain normalized embedding  $\tilde{\mathbf{z}}_i = h(f(\tilde{\mathbf{x}}_i)), \mathbf{z}_i = \tilde{\mathbf{z}}_i / \|\tilde{\mathbf{z}}_i\|_2$ 7 // update class-prototypes  $\boldsymbol{\mu}_c := \text{Normalize}(\alpha \boldsymbol{\mu}_c + (1 - \alpha) \mathbf{z}_i), \ \forall c \in \{1, 2, \dots, C\}$ 8 // calculate compactness loss  $\mathcal{L}_{\text{comp}} = -\sum_{i=1}^{b} \log \frac{\exp(\mathbf{z}_{i}^{\top} \boldsymbol{\mu}_{c(i)} / \tau)}{\sum_{i=1}^{C} \exp(\mathbf{z}_{i}^{\top} \boldsymbol{\mu}_{j} / \tau)}$ 9 // calculate dispersion loss  $\mathcal{L}_{\text{dis}} = \frac{1}{C} \sum_{i=1}^{C} \log \frac{1}{C-1} \sum_{j=1}^{C} \mathbb{1}\{j \neq i\} e^{\mu_i^{\top} \mu_j / \tau}$ 10// calculate overall loss  $\mathcal{L} = \mathcal{L}_{dis} + \lambda_c \mathcal{L}_{comp}$ 11 // update the network weights update the weights in the encoder and the projection head 12

# **Experiment Setup**



#### **In-distribution datasets**



1) **CIFAR-10 [Krizhevsky 2012]** A dataset with 60,000 images composed of *five tasks* from *ten animal and vehicle classes*.



2) **CIFAR-100** [Krizhevsky 2012] A dataset with 60,000 images composed of 20 tasks from 100 generic object classes.

#### **OOD** test datasets



3) SVHN[Netzer 2011], Places365[Zhou 2017)], Textures[Cimpoi 2014], LSUN [Yu 2015], and iSUN [Xu 2015].

#### Test Time OOD Score

- **1)** Maha score (based on the Mahalanobis distance)
- 2) KNN score <sup>[2]</sup> (based on the Euclidean distance to the K-th nearest neighbor)



#### **Evaluation metrics.**

- 1) FPR95(the false positive rate of OOD samples when the true positive rate of ID samples is at 95%)
- 2) AUROC (the area under the receiver operating characteristic curve)
- **3) ID ACC (ID classification accuracy)**

[1] Lee et al., A Simple Unified Framework for Detecting OOD Saamples and Adversarial Attacks, NeurIPS 2018
 [2] Sun et al., Out-of-Distribution Detection with Deep Nearest Neighbbors, ICML 2022



#### **CIDER on Small-scale Datasets**

➤ CIFAR-100 (ID): methods with contrastive losses are trained for 500 epoch

➢ Backbone: ResNet-34

ID classification accuracy on CIFAR-100 (%)

ParNeC 模式识别与神经计算研究组 PAttern Recognition and NEural Computing

| Method                       | SVHN  |        | Places365 |        | OOD Dataset<br>LSUN |              | iSUN    |        | Texture |        | Average |        | Method        | ID ACC   |
|------------------------------|-------|--------|-----------|--------|---------------------|--------------|---------|--------|---------|--------|---------|--------|---------------|----------|
|                              | FPR↓  | AUROC↑ | FPR↓      | AUROC↑ | FPR↓                | AUROC↑       | FPR↓    | AUROC↑ | FPR↓    | AUROC↑ | FPR↓    | AUROC↑ | w.o. contrast | ive loss |
| Without Contrastive Learning |       |        |           |        |                     |              |         |        |         |        | MSP     | 74.59  |               |          |
| MSP                          | 78.89 | 79.80  | 84.38     | 74.21  | 83.47               | 75.28        | 84.61   | 74.51  | 86.51   | 72.53  | 83.12   | 75.27  | ODIN          | 74.59    |
| ODIN                         | 70.16 | 84.88  | 82.16     | 75.19  | 76.36               | 80.10        | 79.54   | 79.16  | 85.28   | 75.23  | 78.70   | 79.11  | GODIN         | 74.92    |
| Mahalanobis                  | 87.09 | 80.62  | 84.63     | 73.89  | 84.15               | 79.43        | 83.18   | 78.83  | 61.72   | 84.87  | 80.15   | 79.53  | Enorgy        | 74.50    |
| Energy                       | 66.91 | 85.25  | 81.41     | 76.37  | 59.77               | 86.69        | 66.52   | 84.49  | 79.01   | 79.96  | 70.72   | 82.55  | Energy        | 74.39    |
| GODIN                        | 74.64 | 84.03  | 89.13     | 68.96  | 93.33               | 67.22        | 94.25   | 65.26  | 86.52   | 69.39  | 87.57   | 70.97  | Mahalanobis   | 74.59    |
| LogitNorm                    | 59.60 | 90.74  | 80.25     | 78.58  | 81.07               | 82.99        | 84.19   | 80.77  | 86.64   | 75.60  | 78.35   | 81.74  | w. contrasti  | ve loss  |
|                              |       |        |           |        | With C              | ontrastive L | earning |        |         |        |         |        | CE + SimCLR   | 73.54    |
| ProxyAnchor                  | 87.21 | 82.43  | 70.10     | 79.84  | 37.19               | 91.68        | 70.01   | 84.96  | 65.64   | 84.99  | 66.03   | 84.78  | SSD+          | 75.11    |
| CE + SimCLR                  | 24.82 | 94.45  | 86.63     | 71.48  | 56.40               | 89.00        | 66.52   | 83.82  | 63.74   | 82.01  | 59.62   | 84.15  |               | 75.11    |
| CSI                          | 44.53 | 92.65  | 79.08     | 76.27  | 75.58               | 83.78        | 76.62   | 84.98  | 61.61   | 86.47  | 67.48   | 84.83  | ProxyAnchor   | 74.21    |
| SSD+                         | 31.19 | 94.19  | 77.74     | 79.90  | 79.39               | 85.18        | 80.85   | 84.08  | 66.63   | 86.18  | 67.16   | 85.90  | KNN+          | 75.11    |
| KNN+                         | 39.23 | 92.78  | 80.74     | 77.58  | 48.99               | 89.30        | 74.99   | 82.69  | 57.15   | 88.35  | 60.22   | 86.14  | CIDEP         | 75.25    |
| CIDER                        | 23.09 | 95.16  | 79.63     | 73.43  | 16.16               | 96.33        | 71.68   | 82.98  | 43.87   | 90.42  | 46.89   | 87.67  | CIDEK         | 15.55    |

# Experiment

ParNeC 模式识别与神经计算研究组 PAttern Recognition and NEural Computing

#### **CIDER on Large-scale Datasets**

➤ ImageNet-100 (ID): finetune for 10 epoch



# Experiment



#### **CIDER** learns distinguishable representations.

Visualization of learned features by UMAP On CIFAR-10 (ID)



Figure 3: (a): UMAP (McInnes et al., 2018) visualization of the features when the model is trained with CE vs. CIDER for CIFAR-10 (ID). (b): CIDER makes OOD samples more separable from ID compared to CE (*c.f.* Table 4).



#### **CIDER** improves inter-class dispersion and intra-class compactness.

Compactness $(\mathcal{D}_{tr}^{in}, \boldsymbol{\mu}) = \frac{1}{C} \sum_{j=1}^{C} \frac{1}{n} \sum_{i=1}^{n} z_i^{\top} \boldsymbol{\mu}_j \mathbb{1}\{y_i = j\},\$ 

Dispersion $(\boldsymbol{\mu}) = \frac{1}{C} \sum_{i=1}^{C} \frac{1}{C-1} \sum_{j=1}^{C} \boldsymbol{\mu}_{i}^{\top} \boldsymbol{\mu}_{j} \mathbb{1}\{j \neq i\}.$ 

$$\uparrow \text{ Separability} = \frac{1}{|\mathcal{D}_{\text{test}}^{\text{ood}}|} \sum_{x \in \mathcal{D}_{\text{test}}^{\text{ood}}} \max_{j \in [C]} z_x^\top \boldsymbol{\mu}_j - \frac{1}{|\mathcal{D}_{\text{test}}^{\text{in}}|} \sum_{x' \in \mathcal{D}_{\text{test}}^{\text{in}}} \max_{j \in [C]} z_{x'}^\top \boldsymbol{\mu}_j,$$

Table 4: Compactness and dispersion of CIFAR-10 feature embedding, along with the separability *w.r.t.* each OOD test set. We convert cosine similarity to angular degrees for better readability.

| Training Loss                       | Dispersion (ID) $\uparrow$ | Compactness (ID)↓ | <b>ID-OOD Separability</b> ↑ (in degree) |                |                |                |                  |                |
|-------------------------------------|----------------------------|-------------------|------------------------------------------|----------------|----------------|----------------|------------------|----------------|
|                                     | (in degree)                | (in degree)       | CIFAR-100                                | LSUN           | iSUN           | Texture        | SVHN             | AVG            |
| Cross-Entropy<br>SSD+ (SupCon loss) | 67.17<br>75.50             | 24.53<br>22.08    | 7.11                                     | 14.57<br>28.55 | 13.70<br>25.70 | 13.76<br>33.45 | $11.08 \\ 37.70$ | 12.04<br>29.86 |
| CIDER (ours)                        | 87.53                      | 21.35             | 31.41                                    | <b>48.37</b>   | 41.54          | <b>39.60</b>   | 51.65            | 42.51          |

#### Experiment



#### **Ablation study**

- ➤ CIFAR-100 (ID): methods with contrastive losses are trained for 500 epoch
- ➢ Backbone: ResNet-34

Table 3: Ablation study on loss component. Results (in AUROC) are based on CIFAR-100 trained with ResNet-34. Training with only  $\mathcal{L}_{comp}$  suffices for ID classification. Inter-class dispersion induced by  $\mathcal{L}_{dis}$  is key to OOD detection.

| Loss Co                    | mponents                  |           | ID ACC↑ |       |         |       |       |         |  |
|----------------------------|---------------------------|-----------|---------|-------|---------|-------|-------|---------|--|
| $\mathcal{L}_{	ext{comp}}$ | $\mathcal{L}_{	ext{dis}}$ | Places365 | LSUN    | iSUN  | Texture | SVHN  | AVG   | ID Nee1 |  |
| $\checkmark$               |                           | 79.63     | 85.75   | 84.45 | 87.21   | 91.33 | 85.67 | 75.19   |  |
|                            | $\checkmark$              | 54.76     | 69.81   | 54.99 | 44.26   | 46.48 | 54.06 | 2.03    |  |
| $\checkmark$               | $\checkmark$              | 73.43     | 96.33   | 82.98 | 90.42   | 95.16 | 87.67 | 75.35   |  |

# Thanks