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The task of OOD Detection

ooD
‘ ° » Using the model's confidence
pasedon the model in  S(x:f) >\ B score for OOD detection, which
Test input x—> G\ (x:|f]) = {out S(Xﬁ :f) <\ | can be abnormally high on OOD
’ samples.
S: Scoring function
OOD score distribution

» Distance-based methods leverage
feature embeddings extracted from a
model, and operate under the assumption
that the test OOD samples are relatively
far away from the clusters of ID data.

Mathematically, let D2 denote an OOD test set where the label space Y4 NYin =
(). The decision can be made via a level set estimation:

Ga(z) = 1{S(z) > A},
where samples with higher scores S(x) are classified as ID and vice versa. The thresh-

old A is typically chosen so that a high fraction of ID data (e.g. 95%) is correctly
classified.
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Hyperspherical embeddings
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A hypersphere is a topological space that 1s homeomorphic to a standard n-sphere,
which is the set of points in (n + 1)-dimensional Euclidean space that are located at
a constant distance from the center. When the sphere has a unit radius, it 1s called the
unit hypersphere. Formally, an n-dimensional unit-hypersphere

5" = {z € Rz, = 1)

Geometrically, hyperspherical embeddings lie on the surface of a hypersphere.
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Previous work

» Arguably, the efficacy of distance-based approaches can depend largely on the quality of feature embeddings.

» Recent works including SSD+ and KNN+ directly employ off-the-shelf contrastive losses for OOD detection.

» They use the SupCon for learning the embeddings, which are then used for OOD detection with either
parametric Mahalanobis distance or non-parametric KNN distance.

(Example) When trained on CIFAR-10 using SupCon loss, the average angular distance between ID and OOD
data 1s only 29.86 degrees in the embedding space, which is too small for effective ID-OOD separation.

» Two properties

» Each sample has a higher probability assigned to the correct class in comparison to incorrect classes

A

» Different classes are far apart from each other.

Introduces two loss =¥ Dispersion Loss & Compactness Loss
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Framework Overview

Compactness and Dispersion Regularized (CIDER)

Penultimate Hyperspherical

Layer Embedding
% Class prototype

® Embedding of an instance

Augmented Projection
inputs Head «+— Instance-to-prototype attraction

(from Compactness 105S Leomp )

<+-» Prototype-to-prototype dispersion
(from Dispersion loss Lgis )

—» Encoder

> A deep neural network encoder f : & — R® that maps the augmented input to a high dimensional feature

» A projection head: i : R® — R? maps high-dim feature to a lower-dim feature
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Desirable Hyperspherical Embeddings in the Open World

B Embedding of OOD sample
® Embedding of ID sample
@ D Class prototype

Fox (OOD)
S ¥ Ooud

Inter-class
dispersion

Cat (ID)

Intra-class
compactness '
® | ¥

Truck (ID)

.;::ne (0O0D)

ID and OOD Samples on the hypersphere

ParN.C
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Preliminaries

» Multi-class classification

X denotes the input space

Y = {1,2,...,C} denotes the ID labels.

The training set DI = {(z;, y;) }¥ is drawn iid. from Pyy.

Py denote the marginal distribution over X', which is called the in-distribution (ID).
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Modeling Hyperspherical Embeddings

» Intra-class compactness

» Augmented input # — high-dim feature f(Z) — low-dim feature Z = h(f(Z))

» Hyperspherical ( Iy-normalized) feature z = Z/||Z||2

» von-Mises-Fisher (vMF) distribution

L_1 T = C Zd(’i) CXp (K’H’;rz)
Pa (Z; fes ) = —F- " F = Zy(k)exp (kpz) P (y =clz{rp;},_ ) -
(2m) 21y () ( ) KLY }3—1 Zle Za(r)exp (kp) z)
> [t 18 the class prototype (mean) of class ¢ exp (uTz /T)
= —— ,

» & indicates the spread of the distribution around mean direction ) j=1XP (NjTZ/ ’T)
Maximum
likehood

It N exp(lg—ﬂ’c(i)/T)
Ecomp — N Zizl log Zle eXp(ZzT-u’j/T)

N C
argmax, Hi:l p (yz | 2;; {K’ja M }j:1>
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Modeling Hyperspherical Embeddings

» Inter-class dispersion

» Optimize large angular distances among different class prototypes
C C : : T /T
Lis = & >y log 5 D i Wy #itett /T
» Compactness and Dispersion Regularized Learning (CIDER)

ECIDER — £dis + )\c[/‘comp
» Update of class prototypes

» Class prototypes are initialized as the classwise mean p. using the training set

» Updated via exponential-moving-average (EMA):

p. := Normalize (ap,. + (1 — a)z) ,Ve € {1,2,...,C'}

ParN,C
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Pseudo-code for CIDER
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Algorithm 1: Pseudo-code of CIDER.

P P —

tn

10

11

12

for iter = 1,2,...,do

sample a mini-batch B = {x;,:}?_,
obtain augmented batch B = {X;, 7, } 2
Vie{1,2,...,b}
for x; € B do
// obtain normalized embedding
z: = h(f(%:)). 2: = 2/ |22

// update class-prototypes

pe = Normalize(ape + (1 — a)z;), Vee {1,2,...,C}

// calculate compactness loss
_ T
o Zb o exp(z pegiy/7T)
Lcomp = 1108 S5y exp(z] pj/7)

// calculate dispersion loss

. . . T
Lais = & 251, log oty Y51y L{j # ieks /7

// calculate overall loss

'C = 'C'dis + /\r:ﬁcorup

// update the network weights

update the weights in the encoder and the projection head

-— 1 by applying two random augmentations to x; € B

Input: Training dataset D, neural network encoder f, projection head h, classifier g, class prototypes gt
(1 <5 <), weights of loss terms Ay, and A, temperature 7
for epoch = 1,2,...,do
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In-distribution datasets 00D test datasets
’ - b | oo R
AL S AED EEESS
1) CIFAR-10 [Krizhevsky 2012] 2) CIFAR-100 [Krizhevsky 2012] 3) SVHN|[Netzer 20.11]~ .Places365[Zh0u

composed of five tasks from composed of 20 tasks from 100 [Yu 2015], and iSUN [Xu 2015].
ten animal and vehicle classes. generic object classes.

Test Time OOD Score Evaluation metrics.

1) Mabha score n(based on the Mahalanobis distance) 1) FPR95(the false positive rate of OOD samples when

.. . o
2) KNN score 2 (based on the Euclidean distance the true positive rate of ID samples is at 95%0)

to the K-th nearest neighbor) 2) AUROC (the area under the receiver operating
G characteristic curve)
.Dog(m) .
% 3) ID ACC (ID classification accuracy)

@ cam

00D sample
[1] Lee et al., A Simple Unified Framework for Detecting OOD Saamples and Adversarial Attacks, NeurlPS 2018

[2] Sun et al., Out-of-Distribution Detection with Deep Nearest Neighbbors, ICML 2022
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CIDER on Small-scale Datasets

» CIFAR-100 (ID): methods with contrastive losses are trained for 500 epoch

» Backbone: ResNet-34
ID classification accuracy on CIFAR-100 (%)

u N OO0OD Dataset _ Average Method ID ACC
Method SVHN Places365 LSUN 1ISUN Texture
FPR| AUROC FPR| AUROCtT FPR| AUROCT FPR| AUROCt FPR| AUROCt FPR| AUROCT w.0. contrastive loss

Without Contrastive Learning MSP 74.59

MSP 78.89 79.80 84.38 74.21 83.47 75.28 84.61 74.51 86.51 72.53 83.12  75.27 ODIN 74.59

ODIN 70.16 84.88 82.16 75.19 76.36 80.10 79.54 79.16 85.28 75.23 7870  79.11 GODIN 74.92

Mahalanobis ~ 87.09 80.62 84.63 73.89 84.15 79.43 83.18 78.83 61.72 84.87 80.15  79.53

Energy 6691 8525 8141 7637 5977 8669 6652 8449 7901 7996 7072 82.55 Energy 74.59

GODIN 74.64 84.03 89.13 68.96 93.33 67.22 94.25 65.26 86.52 6939 8757 70.97 Mahalanobis 74.59

LogitNorm 59.60 90.74 80.25 78.58 81.07 82.99 84.19 80.77 86.64 7560 7835 81.74 w. contrastive loss

l With Contrastive Learning l CE + SimCLR 73.54

ProxyAnchor 87.21 82.43 70.10 79.84 37.19 91.68 70.01 84.96 65.64 84.99 66.03 8§4.78

CE + SimCLR  24.82 94.45 86.63 71.48 56.40 89.00 66.52 83.82 63.74 82.01 59.62 84.15 SSD+ 75.11
CSI 44.53 92.65 79.08 76.27 75.58 83.78 76.62 84.98 61.61 86.47 6748 8§4.83 PI‘O)iyAﬂChOI' 74.21
SSD+ 31.19 94.19 77.74 79.90 79.39 85.18 80.85 84.08 66.63 86.18 67.16  85.90 KNN+ 75.11

KNN+ 39.23 92.78 80.74 77.58 48.99 89.30 74.99 82.69 57.15 88.35 60.22 §6.14 CIDER 7535
CIDER 23.09 95.16 79.63 73.43 16.16 96.33 71.68 82.98 43.87 90.42 46.89 87.67 T
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CIDER on Large-scale Datasets

» ImageNet-100 (ID): finetune for 10 epoch

ID | N OOD test sets

ImageNet-100 iNaturalist SUN Places Textures

SupCon 100 SupCon
= CIDER mmm CIDER
99
3 Q 9
o x
o4 =
w < 97
I )
95
Places365 Textures iNaturalist SUN Places365 Textures iNaturalist

Dataset Dataset

(a) FPR95 for different OOD test sets (b) AUROC for different OOD test sets
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CIDER learns distinguishable representations.

Visualization of learned features by UMAP On CIFAR-10 (ID)

(a) ID embeddings of CE (left) and CIDER (right)
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CIFAR-10
(1D class prototype)

. CIFAR-100
. BT.2° ‘ _.{hard 00D samples)
2NNV @), CIFAR-10
(ID class prototype)

CIFAR-10 (ID)
CIFAR-100
@ (hard 0OD)
87.5
. 31.4°
AR T S @ CIFAR-10 (ID)

(b) ID & OOD of CE (top)
and CIDER (down)

Figure 3: (a): UMAP (Mclnnes et al., 2018) visualization of the features when the model is trained
with CE vs. CIDER for CIFAR-10 (ID). (b): CIDER makes OOD samples more separable from ID
compared to CE (c.f. Table 4).
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CIDER improves inter-class dispersion and intra-class compactness.

I Experiment

Compactness(Dy, 1) = c Z;, L D Zri,Tlej Wy = j},
. . 1 C 1 & T . .
Dispersion(p) = & ) _i_y a1 2j—1 M ;11T 7 i}

SR T 1 T
T Separability = ood\ D reped MaXje(C] Zg Fj— 1pm > pepin. MAXje[C] Zgr by,

test test

Table 4: Compactness and dispersion of CIFAR-10 feature embedding, along with the separability
w.r.t. each OOD test set. We convert cosine similarity to angular degrees for better readability.

ID-OO0D Separability? (in degree)

Dispersion (ID)T Compactness (ID)]
LSUN iSUN Texture SVHN AVG

Training Loss

(in degree) (in degree) CIFAR-100
Cross-Entropy 67.17 24.53 7.11 14.57 13.70 13.76 11.08 12.04
SSD+ (SupCon loss) 75.50 22.08 23.90 28,55 25770 3345 37.70  29.86
CIDER (ours) 87.53 21.35 3141 48.37 41.54  39.60 51.65 4251
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Ablation study

» CIFAR-100 (ID): methods with contrastive losses are trained for 500 epoch

» Backbone: ResNet-34

Table 3: Ablation study on loss component. Results (in AUROC) are based on CIFAR-100 trained
with ResNet-34. Training with only L.omp suffices for ID classification. Inter-class dispersion
induced by Lagis 1s key to OOD detection.

Loss Components AUROCT ID ACCt
Leomp Lais Places365 LSUN iSUN Texture SVHN AVG
v 79.63 85.75 84.45  87.21 91.33 85.67 75.19
v 54.76 69.81 5499  44.26 46.48  54.06 2.03

v v 73.43 96.33 82.98 90.42 95.16  87.67 75.35
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