

Detecting Corrupted Labels Without Training a Model to Predict

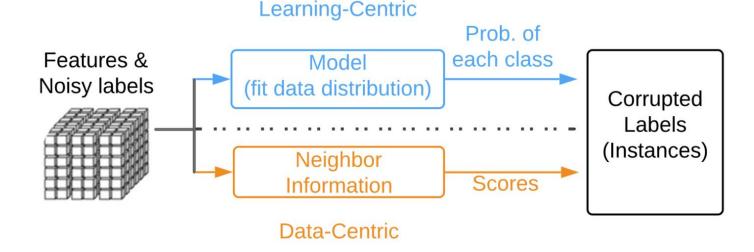
Zhaowei Zhu Zihao Dong Yang Liu

ICML 2022

Background

- Label noise in real-world datasets encodes wrong correlation patterns and impairs the generalization of deep neural networks (DNNs).
- It is critical to find efficient ways to detect corrupted patterns.

- Learning-centric
 - prediction & compare



- Data-Centric
 - neighbor information

Figure 1. The existing learning-centric pipeline vs. our proposed data-centric pipeline. The inputs are features and the corresponding noisy labels, and the outputs are a set of corrupted labels. Blue: The learning-centric solution. Orange: The data-centric solution.

南京航空航 NANJING UNIVERSITY OF AFRICALITY

Motivation

- Previous learning-centric methods
 - train DNNs with noisy supervisions
 - design robust loss functions
- Limitations of the learning-centric methods
 - task-specific and fine-tuning hyperparameters for different datasets/noise
 - as long as the model is trained with noisy supervisions, the memorization of corrupted instances exists.

The model will "subjectively" and wrongly treat the memorized/overfitted corrupted instances as clean.

- Solution
 - drop the dependency on the noisy supervision
 - design a training-free method to find label errors.

Definition 2.1 $((k, \delta_k)$ label clusterability). A dataset D satisfies (k, δ_k) label clusterability if: $\forall n \in [N]$, the feature x_n and its k-Nearest-Neighbors (k-NN) x_{n_1}, \dots, x_{n_k} belong to the same true class with probability at least $1 - \delta_k$.

- a probabilistic Y given X
- the quality of features and the value of k

• The (k, 0) label clusterability is also known as k-NN label clusterability

$$\mathbb{P}\Big(\widetilde{Y}={ ilde y}_n\mid X=x_n,Y=y_n\Big)=\mathbb{P}\Big(\widetilde{Y}={ ilde y}_n\mid X=x_{n'},Y=y_n\Big),orall x_{n'}\in\{x_{n_1},\cdots,x_{n_k}\}$$

 using appropriate features may be better than model logits/predictions when the dataset is noisy.

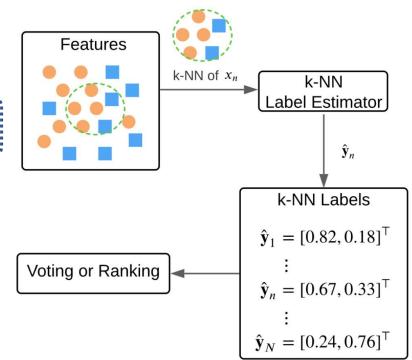


Figure 2. Detect corrupted labels with similar features. Orange circle: instance with noisy label 1. Blue square: instance with noisy label 2. Green dashed circle: A k-NN example.

 The F1 score on corrupted instances is sensitive to the case when the noise rate is mild to low, which is typically the case in practice.

$$\begin{split} F_1 &= 2/(\operatorname{Precision}^{-1} + \operatorname{Recall}^{-1}). \\ \operatorname{Precision} &= \frac{\sum_{n \in [N]} \mathbbm{1}(v_n = 1, \tilde{y}_n \neq y_n)}{\sum_{n \in [N]} \mathbbm{1}(v_n = 1)}, \\ \operatorname{Recall} &= \frac{\sum_{n \in [N]} \mathbbm{1}(v_n = 1, \tilde{y}_n \neq y_n)}{\sum_{n \in [N]} \mathbbm{1}(\tilde{y}_n \neq y_n)}. \end{split}$$

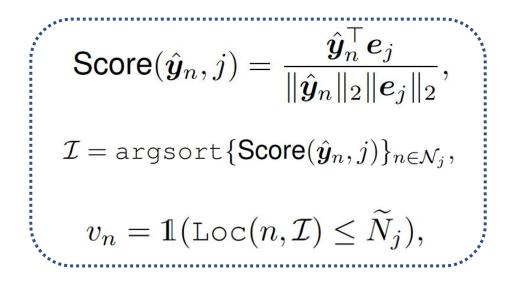
Voting-Based Local Detection

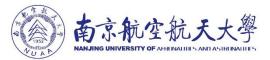
$$egin{aligned} &y_n^{ ext{vote}} = rg\max_{i \in [K]} \hat{oldsymbol{y}}_n[i] \ &v_n := oldsymbol{1}ig(y_n^{ ext{vote}}
eq ilde{y}_nig) \end{aligned}$$

- Ranking-Based Global Detection
 - scoring function
 - threshold

Property 3.1 (Relative score). Within the same instance, the score of the majority class is higher than the others, i.e., $\forall j \neq y_n^{\text{vote}}, j \in [K], \forall n \in [N] : \text{Score}(\hat{y}_n, y_n^{\text{vote}}) > \text{Score}(\hat{y}_n, j).$

Property 3.2 (Absolute score). Score(\hat{y}_n, j) is jointly determined by both $\hat{y}_n[j]$ and $\hat{y}_n[j'], \forall j' \neq j$.





$$egin{aligned} \widetilde{N}_j &= \mathbb{P}(Y
eq j \mid \widetilde{Y} = j) \cdot N_j \ && \mathbb{P}(Y
eq j \mid \widetilde{Y} = j) = 1 - \mathbb{P}(Y = j \mid \widetilde{Y} = j), \end{aligned}$$

• Borrow the results from the HOC, where the noise transition probability and the marginal distribution of clean label can be estimated with only features and the corresponding noisy labels.

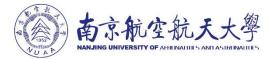
• Bayes' rule:

 $\mathbb{P}(Y=j|\widetilde{Y}=j)=\mathbb{P}(\widetilde{Y}=j|Y=j)\cdot\mathbb{P}(Y=j)/\mathbb{P}(\widetilde{Y}=j),$



Algorithm 1 Detection with Similar Features (The SimiFeat Detector) 1: Input: Number of epochs: M. k-NN parameter: k. Noisy dataset: $\widetilde{D} = \{(x_n, \widetilde{y}_n)\}_{n \in [N]}$. Feature extractor: $g(\cdot)$. Method: *Vote* or *Rank*. Epoch counter m = 0. 2: repeat $x'_n \leftarrow \text{RandPreProcess}(x_n), \forall n;$ 3: # Initialize & Standard data augmentations $x_n \leftarrow g(x'_n), \forall n;$ # For tasks with rarely clusterable features, extract features with $q(\cdot)$ 4: 5: $\hat{y}_n \leftarrow \texttt{kNNLabel}(\{x_n\}_{n \in [N]}, k)$ # Get soft labels. One can weight instances by the similarity to the center instance. 6: if Vote then $y_n^{\text{vote}} \leftarrow \arg \max_{i \in [K]} \hat{y}_n[i];$ 7: # Apply local majority vote $v_n \leftarrow \mathbb{1}(y_n^{\text{vote}} \neq \tilde{y}_n), \forall n \in [N];$ 8: # Treat as corrupted if majority votes disagree with noisy labels 9: else $\mathbb{P}(Y), \mathbb{P}(\widetilde{Y}|Y) \leftarrow \operatorname{HOC}(\{(x_n, \widetilde{y}_n)\}_{n \in [N]});$ # Estimate clean priors $\mathbb{P}(Y)$ and noise transitions $\mathbb{P}(\widetilde{Y}|Y)$ by HOC 10: $\mathbb{P}(Y|\widetilde{Y}) = \mathbb{P}(\widetilde{Y}|Y) \cdot \mathbb{P}(Y) / \mathbb{P}(\widetilde{Y});$ 11: # Estimate thresholds by Bayes' rule for j in [K] do 12: $\mathcal{N}_j := \{ n | \tilde{y}_n = j \};$ 13: # Detect corrupted labels in each set \mathcal{N}_i $\mathcal{I} \leftarrow \operatorname{argsort} \{ \mathbf{Score}(\hat{y}_n, j) \}_{n \in \mathcal{N}_i};$ 14: # \mathcal{I} records the raw index of each sorted value $v_n \leftarrow \mathbb{1}\left(\operatorname{Loc}(n,\mathcal{I}) \leq |(1 - \mathbb{P}(Y = j | \widetilde{Y} = j)) \cdot N_j|\right);$ 15: # Select low-score (head) instances as corrupted ones end for 16: end if 17: 18: $\mathcal{V}_m = \{v_n\}_{n \in [N]};$ # Record detection results in the m-th epoch 19: **until** M times 20: $\mathcal{V} = \text{Vote}(\mathcal{V}_m, \forall m \in [M]);$ # Do majority vote based on results from M epochs 21: Output: $[N] \setminus \mathcal{V}$.

Experiments



• Fitting Noisy Distributions May Not Be Necessary

Table 1. Comparisons of F_1 -scores (%). CORES, CL, TracIn: Train with noisy supervisions. SimiFeat-V and SimiFeat-R: Get $g(\cdot)$ without any supervision. Top 2 are **bold**.

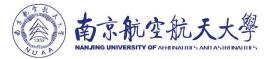
Метнор	CIFAR10				CIFAR100			
	Human	Symm. 0.6	Asym. 0.3	Inst. 0.4	Human	Symm. 0.6	Asym. 0.3	Inst. 0.4
CORES	65.00	92.94	7.68	87.43	3.52	92.34	0.02	9.67
CL	55.85	80.59	76.45	62.89	64.58	78.98	52.96	50.08
TRACIN	55.02	76.94	73.47	58.85	61.75	76.74	48.42	49.89
DEEP k -NN	56.21	82.35	75.24	63.08	57.40	70.69	56.75	63.85
SIMIFEAT-V	82.30	93.21	82.52	81.09	73.19	84.48	65.42	74.26
SIMIFEAT-R	83.28	95.56	83.58	82.26	74.67	88.68	62.89	73.53

• Features May Be Better Than Model Predictions

Table 2. Comparisons of F_1 -scores (%). CORES, CL, TracIn: Use logit layers. SimiFeat-V/R: Use only representations. All methods use the same fixed extractor from CLIP. Top 2 are bold.

METHOD	CIFAR10				CIFAR100			
	Human	Symm. 0.6	Asym. 0.3	Inst. 0.4	Human	Symm. 0.6	Asym. 0.3	Inst. 0.4
CE SIEVE	67.21	94.56	5.24	8.41	16.24	88.55	2.6	1.63
CORES	83.18	96.94	12.05	88.89	38.52	92.33	7.02	85.52
CL	69.76	95.03	77.14	62.91	67.64	85.67	62.58	61.53
TRACIN	81.85	95.96	80.75	64.97	79.32	91.03	63.12	64.31
DEEP k -NN	82.98	87.47	76.96	77.42	72.33	82.95	64.96	74.25
SIMIFEAT-V	87.43	96.44	88.97	87.11	76.26	86.88	73.50	80.03
SIMIFEAT-R	87.45	96.74	89.04	91.14	79.21	90.54	68.14	77.37

Experiments



• The Effect of the Quality of Features

Table 3. Comparisons of F_1 -scores (%) using $g(\cdot)$ with different δ_k (%). Model names are the same as Figure 3.

PRE-TRAINED MODEL		CIFAR1()		CIFAR100			
PRE-IRAINED MODEL	$1 - \delta_k$	Human	Inst. 0.4	$1 - \delta_k$	Human	Inst. 0.4		
R18-IMG	35.73	75.40	80.22	11.30	74.91	71.99		
R34-IMG	48.13	79.52	82.43	16.17	76.88	74.00		
R50-IMG	45.77	78.40	82.06	15.81	76.55	73.51		
VIT-B/32-CLIP	64.12	87.45	91.14	19.94	79.21	77.37		
R34-C10-SSL	69.31	83.28	85.26	2.59	68.03	65.94		
R34-C10-CLEAN	99.41	98.39	98.59	0.22	60.90	60.73		
R34-C100-SSL	18.59	59.96	74.99	22.46	74.67	73.53		
R34-C100-CLEAN	18.58	60.17	76.41	89.07	92.87	95.29		

Table 4. Experiments on Clothing1M. None: Standard training with 1M noisy data. R50-Img (or ViT-B/32-CLIP, R50-Img Warmup-1): Apply our method with ResNet50 pre-trained on ImageNet (or ViT-B/32 pre-trained by CLIP, R50-Img with 1-epoch warmup). The clean test accuracy on the best epoch, the last 10 epochs, and the last epoch, are listed. Top-1 is **bold**.

DATA SELECTION	# TRAINING	BEST EPOCH	Last 10	LAST
NONE	1M (100%)	70.32	69.44 ± 0.13	69.53
R50-IMG	770к (77.0%)	72.37	71.95 ± 0.08	71.89
VIT-B/32-CLIP	700к (70.0%)	72.54	72.23 ± 0.17	72.11
R50-IMG WARMUP-1	767к (76.7%)	73.64	$\textbf{73.28} \pm \textbf{0.18}$	73.41

Thanks