

Invariant Feature Learning for Generalized Long-Tailed Classification

Kaihua Tang¹, Mingyuan Tao², Jiaxin Qi¹, Zhenguang Liu³, Hanwang Zhang¹ ¹Nanyang Technological University, ²Damo Academy, Alibaba Group, ³Zhejiang University kaihua.tang@ntu.edu.sg, juchen.tmy@alibaba-inc.com, jiaxin003@e.ntu.edu.sg liuzhenguang2008@gmail.com, hanwangzhang@ntu.edu.sg

eccv2022

Introduce

(a) Long-Tailed Distribution in Real-world Images

(b) Class-wise Balanced Data and its Imbalanced Attribute Distribution

Generalized Long-Tailed classification (GLT): class-wise imbalance + attribute-wise imbalance

Introduce

existing LT methods fail to tackle the attribute-wise imbalance:

- They rely on class-wise adjustment, while the attribute-wise traits are hidden in GLT;
- They are based on lifting the tail class boundary to welcome more samples to increase the tail accuracy, leaving the confused region of similar attributes unchanged in the feature space.

Problem Formulation

Previous Assumption: $P(y \mid x) = rac{P(x \mid y)}{P(x)} P(y) \propto P(x \mid y) P(y)$ $p_{ ext{train}}(X \mid Y) = p_{ ext{test}}(X \mid Y)$

 $X = (z_c, z_a)$

New Assumption:

 $p_{\text{train}}(z_c|Y) = p_{\text{test}}(z_c|Y)$

Problem Formulation:

$$\begin{split} p(Y = k | X = x) &= p(Y = k | z_c, z_a) \\ &= \frac{p(z_c, z_a | Y = k)}{p(z_c, z_a)} \cdot p(Y = k) \\ &= \frac{p(z_c | Y = k)}{p(z_c)} \cdot \underbrace{\frac{p(z_a | Y = k, z_c)}{p(z_a | z_c)}}_{attribute \ bias} \cdot \underbrace{\frac{p(Y = k)}{class \ bias}}_{class \ bias} \end{split}$$

Introduce

Attribute Bias

- inconsistent performances within each class
 - $\frac{p(z_a = wet \mid Y = dog, z_c = fur)}{p(z_a = wet \mid z_c = fur)} < \frac{p(z_a = fluffy \mid Y = dog, z_c = fur)}{p(z_a = fluffy \mid z_c = fur)}$

 $p(Y = dog | z_c = fur, z_a = wet) < p(Y = dog | z_c = fur, z_a = fluffy)$

• spurious correlations

$$\frac{p(z_a = wet \mid Y = beave, z_c = fur)}{p(z_a = wet \mid z_c = fur)} >> 1$$

$$p(Y = beaver | z_c = fur, z_a = wet)$$

Method

IRM(Invariant Risk Minimization)

Definition 3. We say that a data representation $\Phi : \mathcal{X} \to \mathcal{H}$ elicits an invariant predictor $w \circ \Phi$ across environments \mathcal{E} if there is a classifier $w : \mathcal{H} \to \mathcal{Y}$ simultaneously optimal for all environments, that is, $w \in \arg\min_{\bar{w}:\mathcal{H}\to\mathcal{Y}} R^e(\bar{w} \circ \Phi)$ for all $e \in \mathcal{E}$.

• environment construction

we use the current classification confidence of each training sample as an imbalance indicator of attributes inside the class

$$(1 - p(Y = k|z_c, z_a))^{\beta}$$

• optimization problem

$$\min_{\theta, w} \sum_{e \in \mathcal{E}} \sum_{i \in e} L_{cls}(f(x_i^e; \theta), y_i^e; w),$$

subject to $\theta \in \arg \min_{\theta} \sum_{e \in \mathcal{E}} \sum_{i \in e} ||f(x_i^e; \theta) - C_{y_i^e}||_2$

$$L = L_{cls} + \alpha \cdot L_{IFL}$$
, where $L_{IFL} = ||f(x_i^e; \theta) - C_{y_i^e}||_2$

• Class-wise Long Tail (CLT) Protocol

Train-GLT: class-wise LT and attribute-wise LT Test-CBL: class-wise balanced and attribute-wise LT

• Attribute-wise Long Tail (ALT) Protocol

Train-CBL: class-wise balanced and attribute-wise LT Test-GBL: class-wise balanced and attribute-wise balanced

• Generalized Long Tail (GLT) Protocol

Train-GLT: class-wise LT and attribute-wise LT Test-GBL: class-wise balanced and attribute-wise balanced

(a) Collecting an "Attribute-Wise Balanced" Test Set for ImageNet

(b) Balancing Attribute Distribution for MSCOCO-Attribute

Table 1: Evaluation of CLT and GLT Protocols on ImageNet-GLT: Accuracy (*left in each cell*) and Precision (*right in each cell*) are reported. All methods are re-implemented under the same codebase with ResNext-50 backbone

Methods		C	ass-Wise Long	fail (CLT) Prote	ocol	Generalized Long Tail (GLT) Protocol				
< Accuracy Precision >		$Many_C$	Medium _C	Few _C	Overall	$Many_C$	Medium _C	Few _C	Overall	
	Baseline	59.34 39.08	36.95 52.87	14.39 56.65	42.52 47.92	50.98 32.90	28.49 44.72	10.28 49.11	34.75 40.65	
	cRT [22]	56.55 45.79	42.89 46.23	26.67 41.47	45.92 45.34	48.02 38.40	34.16 38.07	19.92 33.50	37.57 37.51	
	LWS [22]	55.38 46.67	43.91 46.87	30.11 40.92	46.43 45.90	47.15 39.16	34.88 38.68	22.56 32.88	37.94 38.01	
	Deconfound-TDE [55]	54.94 49.27	43.18 43.91	28.64 33.40	45.70 44.48	46.87 42.39	34.43 35.77	22.11 26.30	37.56 37.00	
ce	BLSoftmax [46]	55.60 48.19	42.74 47.27	28.79 38.14	45.79 46.27	47.15 40.89	33.48 39.11	21.10 27.50	37.09 38.08	
an	Logit-Adj [37]	54.55 49.70	44.40 45.05	31.53 36.04	46.53 45.56	45.94 41.97	35.15 36.63	24.07 28.59	37.80 37.56	
Dal	BBN [78]	61.64 42.74	43.80 54.44	13.94 55.12	46.46 49.86	52.41 35.58	34.31 46.38	10.06 44.43	37.91 41.77	
e-l	LDAM [7]	59.05 45.39	43.23 48.80	24.44 44.99	46.74 46.86	51.02 38.78	34.13 40.39	18.46 35.91	38.54 39.08	
R	(ours) Baseline + IFL	62.71 42.98	40.10 56.83	18.92 61.92	45.97 52.06	54.09 36.74	31.73 49.03	13.62 51.42	37.96 44.47	
	(ours) cRT + IFL	61.27 45.84	43.96 51.67	24.32 53.64	47.94 49.63	52.75 39.11	35.14 43.36	17.92 43.35	39.60 41.65	
	(ours) LWS + IFL	61.50 45.43	43.79 52.85	23.86 55.58	47.89 50.29	53.21 38.92	34.99 44.44	17.42 45.90	39.64 42.45	
	(ours) BLSoftmax + IFL	58.00 53.70	44.70 51.73	33.49 37.58	48.34 50.39	49.92 46.86	36.11 44.31	25.71 32.01	40.08 43.48	
	(ours) Logit-Adj + IFL	56.96 56.22	46.54 50.10	36.88 33.29	49.26 50.02	48.25 49.17	37.50 41.65	29.00 25.77	40.52 42.28	
nt	Mixup [73]	59.68 37.96	30.83 55.74	7.09 34.33	38.81 45.41	51.04 31.85	23.10 47.25	4.94 22.88	31.55 37.44	
me	RandAug [11]	64.96 42.63	40.30 59.10	15.20 56.60	46.40 52.13	56.36 35.97	31.43 51.13	10.36 48.92	38.24 44.74	
lân	(ours) Mixup + IFL	67.71 47.77	45.87 62.58	24.71 67.77	51.43 57.44	59.36 40.95	36.77 54.67	18.06 55.10	43.00 49.25	
A	(ours) RandAug + IFL	69.35 49.42	48.05 63.19	26.92 66.04	53.40 58.11	60.79 42.41	39.07 55.15	20.04 57.90	44.90 50.47	
nsemble	TADE [74]	58.44 56.38	48.01 51.41	36.60 41.08	50.47 51.85	50.29 49.25	38.74 43.74	27.99 31.75	41.75 44.15	
	RIDE [61]	64.04 51.91	48.66 53.21	30.44 46.25	52.08 51.65	55.47 44.55	38.65 44.26	22.80 37.26	43.00 43.32	
	(ours) TADE + IFL	61.71 55.59	48.87 53.42	34.02 40.93	51.78 52.41	53.75 48.73	39.90 45.28	26.77 35.34	43.47 45.17	
E	(ours) RIDE + IFL	65.68 54.13	50.82 56.22	31.91 52.10	53.93 54.76	57.84 47.00	41.80 48.65	24.63 42.96	45.64 47.14	

_	Methods	Attribute-Wise Long Tail (ALT) Protocol								
<	Accuracy Precision >	Many _A		Medium _A		FewA		Overall		
	Baseline	56.95	55.83	40.11	39.17	28.12	28.16	41.73	41.74	
	cRT [22]	57.45	56.28	39.72	38.65	27.58	27.35	41.59	41.43	
	LWS [22]	56.95	55.85	40.11	39.30	28.03	27.98	41.70	41.71	
	Deconfound-TDE [55]	57.10	56.58	39.80	40.08	27.29	27.96	41.40	42.36	
DCe	BLSoftmax [46]	56.48	55.56	39.81	38.96	27.64	27.60	41.32	41.37	
laı	BBN [78]	60.90	60.17	41.08	40.81	27.79	28.26	43.26	43.86	
-Pe	LDAM [7]	59.04	56.51	40.96	39.21	27.96	27.22	42.66	41.80	
Re	(ours) Baseline + IFL	61.38	60.78	44.79	44.21	31.49	31.98	45.89	46.42	
	(ours) cRT + IFL	61.12	60.25	44.26	43.65	31.02	31.31	45.47	45.81	
	(ours) LWS + IFL	61.19	60.45	44.66	44.07	31.43	31.91	45.76	46.25	
u - 1	(ours) BLSoftmax + IFL	60.19	59.46	43.54	43.14	30.85	31.46	44.86	45.43	
It	Mixup [73]	58.71	58.04	40.09	38.99	27.52	27.54	42.11	42.42	
me	RandAug [11]	62.35	61.25	45.04	44.27	31.47	31.26	46.29	46.32	
Bn	(ours) Mixup + IFL	65.90	65.88	49.43	49.43	35.40	35.89	50.24	51.04	
Y	(ours) RandAug + IFL	67.39	66.81	51.55	51.28	37.47	37.97	52.14	52.74	
Ensemble	TADE [74]	62.63	61.91	45.84	45.21	32.82	32.82	47.10	47.32	
	RIDE [61]	63.48	61.42	45.62	44.16	32.59	32.26	47.24	46.67	
	(ours) TADE + IFL	63.50	62.67	48.03	47.32	34.69	34.52	48.74	48.78	
	(ours) RIDE + IFL	67.54	67.13	51.92	51.72	37.84	38.46	52.44	53.17	

Table 2: Evaluation of ALT Protocol on ImageNet-GLT

Table 3: Evaluation on MSCOCO-GLT: overall performances are reported

	Protocols	CLT		GLT		ALT	
<	Accuracy Precision >	Overall		Overall		Overall	
	Baseline	72.34	76.61	63.79	70.52	50.17	50.94
	cRT [22]	73.64	75.84	64.69	68.33	49.97	50.37
	LWS [22]	72.60	75.66	63.60	68.81	50.14	50.61
	Deconfound-TDE [55]	73.79	74.90	66.07	68.20	50.76	51.68
e	BLSoftmax [46]	72.64	75.25	64.07	68.59	49.72	50.65
anc	Logit-Adj [37]	75.50	76.88	66.17	68.35	50.17	50.94
ala	BBN [78]	73.69	77.35	64.48	70.20	51.83	51.77
e-h	LDAM [7]	75.57	77.70	67.26	70.70	55.52	56.21
¥	(ours) Baseline + IFL	74.31	78.90	65.31	72.24	52.86	53.49
	(ours) cRT + IFL	76.21	79.11	66.90	71.34	52.07	52.85
	(ours) LWS + IFL	75.98	79.18	66.55	71.49	52.07	52.90
	(ours) BLSoftmax + IFL	73.72	77.08	64.76	70.00	52.97	53.52
	(ours) Logit-Adj + IFL	77.16	79.09	67.53	70.18	52.86	53.49
ut	Mixup [73]	74.22	78.61	64.45	71.13	48.90	49.53
ne	RandAug [11]	76.81	79.88	67.71	72.73	53.69	54.71
Igu	(ours) Mixup + IFL	77.55	81.78	68.83	74.84	53.79	54.60
A	(ours) RandAug + IFL	77.71	81.10	68.16	73.97	56.62	57.12
ole	TADE [74]	76.22	78.84	66.98	71.22	54.93	55.48
m	RIDE [61]	78.29	80.33	68.59	72.20	58.90	59.43
nse	(ours) TADE + IFL	76.53	79.15	67.38	72.42	56.76	57.43
E	(ours) RIDE + IFL	78.86	80.70	69.09	72.57	58.93	59.84

Table 4: Ablation Studies on ImageNet-GLT, where overall results are reported; BLS, Focal, and IFF are balanced softmax loss [46], focal loss [31], and learning from failure [39], respectively

1	1	Ablatio	n Settings		Evaluation Protocols					
#Env	#Env Loss IFL Augment		Backbone	CLT Protocol	GLT Protocol	ALT Protocol				
1	CE	140	-	ResNext-50	42.52 47.92	34.75 40.65	41.73 41.74			
1	Focal	120	2	ResNext-50	39.93 46.99	32.52 39.12	39.58 39.85			
1	LFF	-	-	ResNext-50	41.07 45.79	33.84 38.46	40.14 40.58			
1	CE	~	-	ResNext-50	39.74 47.06	32.82 40.86	39.99 41.38			
2	IRM	-	-	ResNext-50	43.70 48.06	36.03 40.61	44.47 44.60			
2	CE	~	-	ResNext-50	45.97 52.06	37.96 44.47	45.89 46.42			
3	CE	~	<u> </u>	ResNext-50	46.06 52.81	38.32 45.55	45.95 46.43			
2	BLS	~		ResNext-50	48.34 50.39	40.08 43.48	44.86 45.43			
2	CE	~	Mixup	ResNext-50	51.43 57.44	43.00 49.25	50.24 51.04			
2	CE	~	RandAug	ResNext-50	53.40 58.11	44.90 50.47	52.14 52.74			
1	CE	-	-	RIDE-50	46.14 52.98	38.25 45.80	46.32 46.56			
2	CE	~	-	RIDE-50	49.20 54.64	41.35 47.67	48.62 48.62			
2	TADE	~	-	RIDE-50	51.78 52.41	43.47 45.17	48.74 48.78			
2	LDAM	~	-	RIDE-50	53.93 54.76	45.64 47.14	52.44 53.17			
2	LDAM	~	Mixup	RIDE-50	56.48 57.67	47.54 49.86	53.25 54.27			
2	LDAM	~	RandAug	RIDE-50	58.70 59.61	49.80 51.62	55.65 55.81			

Figure 5: (a-b) The trending of precision and accuracy after applying the IFL; (c-d) GLT baselines will automatically improve class-wise LT, while conventional LT re-balancing algorithms won't improve the attribute-wise imbalance in GLT

