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, Reinforcement Learning

1. decision-making

\ A 4

agent

2. trial and error

St Rt At 3. interaction

Rt+1
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«— environment _
< 4. value-based/policy based

1
P St+l

5. model-based/model-free
(S, A, R,S")



hierarchical reinforcement learning
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Hierarchical Reinforcement Learning (HRL) decomposes a long-horizon reinforcement learning
task into a hierarchy of subproblems or subtasks such that a higher-level policy learns to
perform the task by choosing optimal subtasks as the higher-level actions.

Example:

Task: Autonomous Driving
Subproblem 1: Trajectory Planning
Subtask 1: Lane Keeping

Subtask 2: Lane Changing
Subproblem 2: Obstacle Avoidance
Subtask 1: Obstacle Detection
Subtask 2: Collision Avoidance

Subgoal-based MDP:

Introduce the subgoal space G to extend the framework of
MDP

(S,G,ATry)

®G: subgoal space

®r(s, g, a, s') : goal-reaching reward function that indicates
whether the agent achieves subgoal g in transition (s, a, s').

The proposed framework aims to pre-train the subgoal-based
policy for downstream sparse reward tasks.
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Fig. 3. A taxonomy of HRL approaches. The approaches are arranged along the following three dimen-
sions: with or without subtask discovery, for single agent or multiple agents, and for single task or multiple

tasks.

Advantages: efficient for decision making; avoiding

complicated overall task.

Limitations: hard to match the true environment;

time-consuming

Can we design a hierarchical system that can
understand inner relationships between the variables?
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Causality and Causality Discovery

&

Causality refers to the relationship between cause and effect, a idea that an event (the cause)
leads to a subsequent event (the effect).
Characteristic of causality:

®the cause must happen before the effect

® The cause must be sufficient for the effect to occur

® can be determined through experiments or observational studies

Causal discovery is the process of identifying causal relationships between variables in a system
® Bayesian networks
@ structural equation models

® causal inference algorithms
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i Structural Causal Model (SCM)

Structural Causal Model (SCM)

represent the causal relationships between variables in a system, where the nodes represent the
variables in the system and the edges represent the causal relationships between them,

®Processes ®Intervention (X, U, F, P(u)),
Drug < D (Age, UD) Drug < P
Headache € TH{Drug, Age, U Feadache < I (Drug, Age, UK ® X : endogenous variables

Z(age) Z(age ® U : exogenous variables,

® F : functions determining X,
P for each Xi,
N \ R Xi ==fi Xpa(ic) Ui)

X(drug) Y(headache) X(drug) Y(headache) @ P(u)is a distribution over U

SEEING I DOING
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Methodology

® How to discover causality using SCM

® How to get intervention data

® How to bridge causality discovery and subgoal hierarchy construction?
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How to discover causality using SCM How to get intervention learning data
Causality is discovered within adjacent Intervention data is obtained through
steps. subgoal-based policy
fiXpa(ic)r Ni) === fi(Xpa(ic),e» Ni) ® X[ TH[EATEX;, WiLE) A
KIEAF R , FEAE NsubgoalliA
B A

The paper aims to learn the causality
from transition data of adjacent
steps in the agent’ s trajectory

® N JF ML H B Z R REEAEN
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Methodology

o

Xi ::fi (Xpa(i,c)r UL)

Define:
structural parameters n: model causal graph F :function parameters 8’ s training times in one
C(MxM tensor) iteration,

Q: is structural parameters n’ s training times in one
Functional parameters 0: model function f iteration,
o(n;;) represents the probability that Xj is a K: is the sampling times to estimate the gradient of n.

direct cause of Xi(o is sigmoid)
Oi are the parameters of Xi’s conditional

probability function fi given Xi’s parent variable
set Xpa(i,C).
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Algorithm 2 CausalityDiscovery A Ay Level=2
Parameter Structural parameters 7 € RM>*M: Functional parameters 8; Intervention data set Dy; i
Intervention variable set Sy ; Depth= —

1: while T times iteration do ' [ B; ’ By ‘ G | Cy | B Levei=1

2 while f;;,. < F'sdo . .

3% for variablei — 0 to Size(Srv) a0 Phase 1(function learning): e (C) o AN

4: X ~ Dyli] . D, | Dy | PE=itve | a0

5: C ~ Ber((o(n))) ® Bernouli sample from - ‘\‘( eions

6: L = —log P(X|C;8;) . . -

7 0; « Adam(0;, Vo, L) C(intervention data) (D) pepa —— [ subgonts

8: end for . . . . ) actions - —» malces up action space

9: ide — Jidz 1 — cauvsality
10: en'c{ :Vhi]ef T+ . M aximize the Ilkel I h OOd Of (a) Causality Graph (b) Subgoal Hierarchy
11:  while giyr < Qs do step one data
12: for variable 5 = 0 to Size(Srv) do —
13: while £ < K do \af

14: X ~ Dylj] . —
15: C((:)) ~ Ber((o(n))) Phase 2(graph learning): by) = B

16: L% — _log P(X|C;0 . . — | MLP | _6\
17: o = lesPXIc:6) ® estimate the gradient . . E t+3)
18: end while of )= ‘

7.0 -
R AR ) B @-/ b
z t L]
20: N < 15 + g5
g é: end for e (c) Generation Function
- Jide — YQide

23: end while Figure 6: An implementation example. (a): A causality graph with four variables A, B, C, D. (b):
24: end while Implementation of the subgoal hierarchy based on the causality graph in (a). The arrows pointing to
25: return C' = {1, (i )>0.8 ) the subgoal indicate the subgoal’s action space. For example, subgoal I3;’s action space consists of

B’s parent variable D’s subgoals and primitive action space. (¢): Implementation of variable A’s
generation function fy, .
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How to bridge causality discovery and subgoal hierarchy construction?

Two Characteristic;
Three Periods;

A. Causality Discovery

C. Intervention
@ @ @ EV-based Sampling
Stonefictare fondve o I Leam.fru mD Causality L Intervene controllable
(se) o) ntervention Data Graph variables wsing
Enviorment Variables \ (EVCG) o EV-based Subgoals
(EV) ; : i
- 3 25
o/ 4
B. Subgoals Hierarchy Construction l
Reachable Subgoals 2. Collect invention data
B Causality Graph EV-based hrfu?he'-
. ides 0 S bgoal Causality Discovery
generate hierarchy Hierarchy ¥
+ II!!IIIE Unreachable /v (:;)
m / Subg03|ﬁ \}J‘n ,O
EV-based Goal Space ) - @

(EVGS)

Goal space design:
Two changes: increase and decrease

Fi(wig, Tipq1) = Lo vi1>mis

Fd(:ﬂi,tu Lt l) - 155:-‘,,t F1<Tq,¢ "

X?; e :}.’._, I e Fc‘.r‘mnﬂfﬂ}'

Grvas = {(X;, F)

(8¢, (Xis F),a,80101) = F(O(81)i, O(8141)4)s

O is the mapping from state to variable values

a € {(X.?'J F!)IXJ € X}m(i,(ﬁ'}u F! € F{'.ha.ngc} l\_J-"f'll
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Algorithm 3 Subgoal Training

Parameter subgoal-based hicrarchical policy m; causality graph (', Candidate controllable variables
set S¢e; Verification threshold ¢ gy sa1

: Change Function Set F = { f;, fa}

Candidate goals G = {(X,y)|X € Sce,y € F}

k = MaxzDepth(C)

il k > 7,.levels then
BuildNewLevel(k, )

end if

InsertSubgoal (G, )

kmin = MinDepth(Gc)

9: ke = MaxDepth(Ge)

10: for kige = kmin 10 kpos do

11:  Trainning goals Gy = {glg.depth = k;q. }

12:  Trained steps t = ()

13:  whilet < T do

14: Random goal g = RandomSelect(Gr)

15: Execute g and put trajectory into replay buffer D

o] Sl bt [l

16: Train 73, using [)

17: t = t+ Length(trajectory)
18:  end while

19: end for

20: Controllable variables set S¢: = {X|SuccessRatio((X,y)) > dcausat, ¥ € F}
21: return S¢

check its depth first to decide whether to build a new
subgoal level.
insert the new subgoals to the corresponding levels.

return variables whose corresponding subgoal success
ratio exceeds the pre-defined ratio ¢pcausal as controllable
variables.



CDHRL Structure
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Algorithm 1 CDHRL

Parameter Threshold dgysq

I: initial SCM's structure parameters 1), functional parameters 6; subgoal-based policies 7,
2: Tnitial the intervention variables set S7y = {Vaction )
3: while True do

4:

[a—

ol ol AT

0:
11:
12;

Intervention data D; = InterventionSampling(my, Syy )
Causality graph C' = CausalityDiscovery(n, 8, Dy, Spy)
Candidate controllable variables set Spe = {V,- Vi f Sy and Vi) C S;V}
if ¢ 15 empty then
Break
else
Controllable variable set S = SubgoalTraining(mh, C, See, Geausat)
Stv =S +5¢
end if

13: end while
14: initial upper policy m; over subgoal-based policies 7,
15: train 7, maximizing the calculated extrinsic reward

first select new effect variables, whose cause variables have
been in the controllable intervention variables set S,y , as
candidate controllable variables S .

train subgoals of the candidate controllable variables.

the subgoal training success ratios are compared with the
pre-defined threshold ¢.5,55| to select successfully trained
subgoals.

add new controllable variables S, that with successfully
trained subgoals to the intervention variables set SIV before
the next round of intervention sampling and causality
discovery.
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Oracle HRL (OHRL) is
implemented as a two-
level DQN with HER
and an oracle goal
space. The goal space is
a subset of GEV GS
after artificial
eliminating
unreachable and
useless subgoals.

HAC is a powerful goal-
conditioned HRL that
discovers subgoals with a
randomness-driven
exploration paradigm. We
implement a two-layer HAC
with subgoal space GEV GS

LESSON is a modified
goal-conditioned
HRL method based
on HAC that
discovers subgoals
from slowly changed
features

VIEGA is a kind of goal-
conditioned HRL enhanced by
curriculum learning, which pre-
train subgoals in the order of
their training progress. We set
the initial subgoal distribution
as the uniform distribution on
GEV GS and pre-trains subgoals
with enough steps
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Experiments

1000{ —— CDHRL 1.0
—— OHRL
0.8
g 800 —— Hac P
L -
- —— LESSON wn
= H i Eﬂ 4
> 400 H | N -
5 ; : ' 3 e
i ry S g2
200 :::
o H 0.0
0

0. 2.0 oo

.. 1o ) 2.0
Training steps 186

1D } '
Training steps lek Stone Coal Diamond

(a) Eden (b) 2ZD-Minecraft (c) Causality Graph in Minecraft

Figure 2: (a) Agent’s survival time in Eden. (b) Success ratio in 2D-Minecraft. The vertical dotted
lines indicate the end of pre-training of CDHRL and MEGA. Results are derived from average data in

8 trials. (¢) The causal graph of 2D-Minecraft discovered by the agent. Some uncontrollable variables
that unlinked are 1gnored here.
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(a) Occurrences (b)

Figure 3: Exploration capability comparison. We select five explore milestones in 2D-Minecraft
from easy-to-explore to hard-to-explore and record the occurrences in 10K test episodes to compare
the agent’s exploration capability. More occurrences on the hard-to-explore milestone represent
higher exploration capability. (a) CDHRL’s exploration capability iteratively increases along with the
construction of hierarchical structures. (b) CDHRL shows much better exploration capability than
HAC and MEGA. All compared methods are tested after trained 800K steps.
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Figure 4: (a) Structure Hamming Distance (SHD) and (b) Structural Interventional Distance (SID)
between learned and ground-truth causality graph. The intervention data sampled by the assistance of
hierarchical policy make the causality graph more accurate. The ground-truth causality graphs of
Eden and 2D-Minecraft are in Appendix C.2.(c) and (d) are learning curve of two subgoals.
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